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Fig. 1.2 

Let’s measure the length of a book using our hand span. 

In this case the unit for measurement is the hand span. 

But the length of hand span varies from person to person. 

So, everyone will get a different result for measuring the 

same object. 

Chapter 01

Units and Measurements

1. Fundamental and  Derived  Units
Physical quantity:  Any quantity which can be measured is

called a physical quantity.

Examples:  length, weight, time etc.

1.3 Derived Physical  Quantities
Physical quantities which are dependent on other physical

quantities are called derived physical quantity.

For Example:

Fig. 1.1

1.1 Type of Physical Quantities

1.4 Derived Physical Quantities
Examples:

● Acceleration  = length/time2

● Density  = mass/ length3

● Volume  = length3

● Force  = mass  (length)/time2

● Momentum  = mass.  length/time

● Pressure  = mass/length.time2

1.5 How to Measure a Physical Quantity
•  For measuring a physical quantity,  we have to compare it

  with some reference, we call  it a unit.

•  A unit is a standard amount of a physical quantity.

Example:  In old times people  used  to measure length by 

hand span or foot span.

1.2 Fundamental Physical Quantities
Physical quantities which are independent of other  physical

quantities are called fundamental physical quantity. These 

are the quantities we take as fundamental quantities.

Quantity



  

So, there was a need of standardisation of units. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

We always write a measurement of physical quantity as 

its magnitude multiplied by its unit. 

If we measure a physical quantity in more than one unit then 

the multiplication of magnitude and unit is a constant. 

If magnitude of a physical quantity is   

= n1 in the u1 unit and n2 in u2 unit. 

Physical Quantity = n1u1 = n2u2 
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1.8 Need of System of Units
What if everyone uses a unit of their choice for every

measurement.

For Example:

Fig. 1.3

1.6 Standard Units
Some of the standard units:

For measuring length:  metre,  centimetre, foot etc.

For measuring weight: kilogram, gram, pound etc. If everyone decides to have his own way of measurement,

then it will not be possible to come to the correct conclusion.

Thus, a well-defined, universally accepted system must be

developed.

1.9 System of Units
A system of units is a complete set of units which is used to 

measure all kinds of fundamental and derived quantities.

Let’s see examples of some of the major system of units

Fig. 1.4

1.7 Expressing  Measurement of  Physical

  Quantity
Suppose we measure length of a rod and write

Length = 28

By this expression we didn't get any idea about the size of 

rod it can be anything like

28 m

28 mm

28 km

28 foot or 28 steps

So,  we should always express a measurement with the unit 

of measurement.

Fig. 1.6

1.10 The SI System of Units
Earlier different systems of units were used in different 

countries.

So, there was a need for an internationally accepted system

of units.

Here comes the “International System of Units” or SI.

Currently it is the most popular system of units worldwide.

In the SI system there are 7 base units and 2 supplementary

units.

Fig. 1.5
NOTE:



  

 

Quantity Name of Units Symbol 

Length Meter m 

Mass Kilogram kg 

Time Second s 

Electric Current Ampere A 

Temperature Kelvin K 

Amount of Substance Mole mol 

Luminous Intensity Candela Cd 

 

Quantity Name of Units Symbol 

Plane angle Radian rad 

Solid angle Steradian sr 

 

 Fig. 1.7 
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 Fig. 1.8 
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Fundamental quantity Dimension 

Mass [M] 

Length [L] 

Time [T] 

Current [A] 

Temperature [K] 

Amount of substance [mol] 

Luminous intensity [cd] 

 

displacement length
Velocity

timetime
= =

1 1dimension of velocity LT −  =  

( )
( )

2

lengthchange in velocity
Acceleration

time time
a = =

1 2Dimension of acceleration LT −  =  

( )
2

length
Force Mass Acceleration Mass

time
=  = 

1 1 2Dimension of force M LT −  =  

However, there are some quantities such as dimension of 

angle, 

Dimension of angle 
Larc length

Lradius

 
= = 

 

i.e., L 0=  

defining all fundamental quantities are zero.

1.11 Fundamental Units:

2.  Dimensions
Dimensions of a physical quantity are the powers to which 

the fundamental units must be raised in order to get the unit

of the derived  quantity.

1.12 Supplementary Units:

2.1 Writing Dimensions of Physical

  Quantities

1.13 Plane Angle

1.14 Solid Angle
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Fig. 1.9 

Rule 2: Dimensions obey rules of multiplication and 

division. 

AB
D

C
=
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M  a  bL  T  c    

  
    

1 1 1 1

a b cu M L T =  
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2 222

a b cu M L T =  

1 1 1 1 2 2 2 2

a b c a b cQ n M L T n M L T   = =   
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2 1
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cba

TLM
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M L T

  
=     

     

This equation can be used to find the numerical value in the 

second or new system of units. 

Let us convert one joule into erg. 

Joule is SI unit of energy and erg is the CGS unit of energy. 

Dimensional formula of energy is [ML2T-2]  

a = 1, b = 2, c = - 2. 

( )( )

21
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21
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     

This equation can be used to find the numerical value in 

the second or new system of units. 
1 2 2
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1

1 1 1

−
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=      

     
3 4 71 10 10 10=   =

  1  joule  =  1  70  erg.
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If an equation is dimensionally incorrect, it must be wrong. 

On the other hand, dimensionally correct equations may or 

may not be correct. 

Let’s take an example to make it simple for you. 

If I say the area of a circle = 2 x radius2 

- this is dimensionally correct (both sides have dimensions

[L2])

- but it is wrong, as constant should be ‘π’ and not '2'
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2.2 How do  Dimensions  Behave in

  Mathematical  Formulae?
Rule 1:  All terms that are added or subtracted must  have the

same  dimensions.

2.5 Checking the Dimensional

  Consistency of Equations
Principle of Homogeneity of Dimensions:

For an equation to be valid, the dimensions on the left side 

must match the dimensions on the right side, It  is then 

dimensionally correct. Checking this is the basic way of 

performing dimensional analysis.

Let’s check that the second equation of motion is correct or

not.

2.3  Dimensional  Analysis
Dimensional analysis is a tool to find or check relations 

among physical quantities by using their dimensions.

By using dimensional analysis,  we can

1.  Convert a physical quantity from one system of  units  to 

another.

2.  Check the dimensional consistency of equations

3.  Deduce relation among physical quantities.

2.4 Converting a  Physical  Quantity  from

  One  System of  Unit to  Another.
If u1  and u2  are the units of measurement of a physical 

quantity Q and n1  and n2  are there corresponding magnitude,

then  

Let M1, L1  and T1  be the fundamental units of mass, length 

and time in one system:  and M2, L2, T2  be corresponding 

units in another system. If the dimensional formula of

quantity be  then
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Fig. 1.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Left most zeros act as place holders. By writing the 

measurements in scientific notation, we can eliminate 

such place holding zeros. 

Left most zeros appearing in front of non-zero digits are not 

significant 

0.0073 meter = 7.3×10−3 meter 

0.423 meter = 4.23×10−1  meter 

0.000099 meter = 9.9×10−5 meter 
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2.6 Deducing Relation among the

  Physical Quantities
The method of  dimensions can sometimes be used to deduce

relation among the physical quantities.

For this, we should know the dependence of the physical 

quantity on other quantities and consider it as a product type

of the dependency.

Let’s find the time period  of a pendulum  by using 

dimensional analysis. The period of oscillation of the simple

pendulum depends on its length (𝑳𝑳), mass of the bob 
(𝒎𝒎)

and acceleration due to gravity (𝒈𝒈).

Where k is  dimensionless constant.

By considering dimensions on both sides,

Comparing both sides

2.7 Limitations of Dimensional Analysis
1. Dimensionless quantities cannot be determined by this 

method.

2. Constant of proportionality cannot be determined by this

method. They can be found either by experiment (or) by

theory.

3. This method is not applicable to trigonometric,

logarithmic and exponential functions.

4. In some cases, the constant of proportionality also 

possesses dimensions. In such cases, we cannot use this 

system.

5. If one side of the equation contains addition or 

subtraction of physical quantities, we cannot use this 

method to derive the expression.

3.  Significant Figures
The significant figures are normally those digits in a 

measured quantity which are known reliably plus one 

additional digit that is  uncertain.

In this case a student takes reading 4.57  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

Here the digits  4 and 5  are  certain and the

digit 7 is an estimate.

Fig. 1.11

3.1 Rules for Determining Significant

  Figures
Rule 1:  Every non-zero digit in a reported  measurement is 

assumed to be significant.

Example:

24.7 meters, no. of significant figures = 3

0.743 meters, no. of significant figures = 3

714 meters, no. of significant figures = 3

Rule 2:  Zeros appearing between non-zero digits are 

significant.

Example:

70003 meters, no. of significant figures = 5

40.79 meters, no. of significant figures = 4

1.503 meters, no. of significant figures = 4

Rule 3:  Left  most zeros appearing in front of non-zero digits

are not significant

Example:

0.0073 meters, no. of significant figures

= 2

0.423 meters, no. of significant figures

= 3

0.000099 meters, no. of significant figures = 2

NOTE:



  

 

 

 

 

 

 
 

   

 

 

 

  

 

 

 
  

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 

 

 

 

Fig. 1.12 

Way of taking reading 2 is best, 1 

and 3 give the wrong readings. 

This is called a parallax error. 

2. Faulty Technique

Using the instrument wrongly
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Last significant digit is 5 and preceding

digit is 4 which is even. So, the answer is 1.4

Example:

Round off 147.5 to 3 significant figures.

Last significant digit is 5 and preceding

digit is 7 which is odd. So, the answer is 148

4.  Errors
What is an error?

An  error is a mistake of some kind causing an error in your 

results,  so the result is not accurate.

4.1 Types of Errors
Errors can be divided into two main classes

●  Random errors

● Systematic errors

4.2 Random Errors
Random error has no pattern. One  minute your readings 

might be too small. Next,  they might be too large. You can’t

predict random error and these errors are usually 

unavoidable.

● Random errors cannot be rectified but can be minimized.

● Random errors can be reduced by taking a lot of 

readings, and then calculating the average (mean).

Two main causes of random error are

● Human errors

● Faulty technique

4.3 Causes  of Random  Errors
1.H  uman Error

Example:

As the power of ten does  not contribute to significant 

figures, thus even by changing units the number of 

significant digits will remain the same.

Rule 4:  Zeros to the right of the last non-zero digit (trailing 

zeros) in a number with the decimal point are significant if 

they are within the measurement or reporting resolution.

Example:  1.200 has four significant figures (1, 2, 0, and 0)

if they are allowed by the measurement resolution.

Rule 5:  The trailing zeros in a number without decimal

point are not significant example, 010100 has 3 SF. But if 

the number comes from some actual measurement,  then the 

trailing zeros become significant example:  m = 100 kg has 3

SF

3.2 Significant Figures in Calculations
Rules for arithmetical operations with significant figures 

Rule  I:  In addition,  or subtraction the number of decimal 

places in the result should be equal to the number of decimal

places of that term in the operation which contain lesser 

number of decimal places.

e.g.,  12.587-12.5 = 0.087 = 0.1 (⸪ second term contain

lesser i.e.,  one  decimal place)

Rule  II:  In multiplication or division, the number of SF in 

the product or quotient is same as the smallest number of SF

in any of the factors. e.g.,  2.4 × 3.65 = 8.8

So,  let’s read about rounding off.

3.3 Rounding Off
Rule 1:  If the last significant digit(d) < 5 then drop it.

Example:

Round off 12.3 to 2 significant figures.

Last significant digit is 3 < 5

So, the answer is 12.

Rule 2:  If the last  significant digit(d) > 5, then increase the 

preceding digit by 1 and drop ‘d’.

Example:

Round off 14.56 to 3 significant figures.

Last significant digit is 6 > 5

So, the answer is 14.6.

Rule 3:  If the last  significant digit(d) = 5, then look at the 

preceding digit.

(i)  If the preceding  digit is even, drop ‘d’.

(ii)  If the preceding  digit is odd then  increase the preceding 

digit by 1 and drop ‘d’.

Example:

Round off 1.45 to 2 significant figures.



  

 

 

 

 
 

 

Fig. 1.14 

2. Faulty Instrument

Example:

• If a ruler is wrongly calibrated, or if it expands, then all

the readings will be too low

Fig. 1.15 

3. Personal Error

Example:

• If someone have a habit of taking measurements always

from above the reading, then due to parallax you will get

a systematic error and all the readings will be deviated

from actual reading.

 

 

 

 

 

 
 

 

 

Absolute error is denoted by a  and it is always taken 

positive. 
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Fig. 1.13

4.4 Systematic Errors
Systematic error is a consistent, repeatable error associated 

with faulty equipment or a flawed experiment design. These

errors are usually  caused by measuring instruments that are 

incorrectly calibrated.

•  These errors cause readings to be shifted one way (or the

  other) from the true reading.

4.5 Causes of Systematic Errors
Example:

1.Z ero error

•  There is no weight,  and the weighing machine is not

  showing zero.

Fig. 1.16

Now, Let’s learn about some common terms used during,

measurements and error analysis

4.6 Accuracy and  Precision
Accuracy is an indication of how close a measurement is to 

the accepted value.

•  An accurate experiment has a low systematic error.

  Precision is an indication of the agreement among a

  number of measurements.

•  A precise experiment has a low random  error.

Fig. 1.17

4.7 Calculation of Errors
For calculation purpose we divide the errors in three types

•  Absolute error

•  Relative error

•  Percentage error

4.8 Absolute Errors
The magnitude of the difference between the individual 

measurement and the  true value of the quantity is called the

absolute error of the measurement.



  

For Example:  

Let’s say, values obtained in several measurements are 𝑎1, 

𝑎2, 𝑎3, …,𝑎𝑛 

If true value is not available, we can consider arithmetic 

mean as true value. 

1 2 3 ... n

mean

a a a a
a

n

+ + + +
=

Absolute Errors in measurements = 

1 1 meana a a = −

2 2 meana a a = −

.........

.........

n meann a aa −=

Mean Absolute Error 

321 ... n

mean

aaaa
a

+ +++
 =

n

ma  ean    ma  ean
 

 

  

Relative error mean

mean

a

a


=

When the relative error is expressed in percent, it is called 

the percentage error (δ). 

Percentage error 100%mean

mean

a

a



= 

 

 

Fig. 1.18 

NOTE: 

2% of 120 = 2.4 

120 - 2.4 = 117.6 

120 + 2.4 = 122.4 
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BAZ


= +
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Fig. 1.19

Least count of this scale is 1 mm

4.12 Least Count Error
When a measurement falls  between two divisions, then error

due to approximate measurement made by the observer is 

called least count error.

4.13 Propagation of Errors

So, we show the measurement by  

4.9 Relative Errors
The relative error is the ratio of the mean absolute error

amean  to the mean value amean  of the quantity measured.

4.10 Range of Uncertainty
Range of uncertainty is reported as a nominal value plus or

minus an amount called the tolerance or percent tolerance.

Fig. 1.20

4.14 Errors of a Sum or a Difference
When two quantities are added or subtracted, the absolute 

error  in the final result is the sum of the absolute errors in 

the individual quantities.

Measured value of physical quantity  𝐴𝐴  and  𝐵𝐵  is 

respectively 𝐴𝐴  ± Δ𝐴𝐴  and  𝐵𝐵  ±  Δ𝐵𝐵
If a Physical Quantity  𝑍𝑍  =  𝐴𝐴  +  𝐵𝐵  or

𝑍𝑍  =  𝐴𝐴  −  𝐵𝐵
Then Maximum possible  Error in Z

  𝑍𝑍  = Δ𝐴𝐴  +  𝛥𝛥𝐵𝐵

4.15 Errors of a Multiplication or

  Division
Measured value of physical quantity  𝐴𝐴  and  𝐵𝐵  is 

respectively 𝐴𝐴  ± Δ𝐴𝐴  and  𝐵𝐵  ±  Δ𝐵𝐵
If a Physical Quantity  𝑍𝑍  =  𝐴𝐴  ✕  𝐵𝐵  or

𝑍𝑍  =  𝐴𝐴/𝐵𝐵

Then maximum relative error in  𝑍𝑍,

4.11 Limit of Reading or Least Count
The limit of reading of a measurement is equal to the 

smallest graduation of the scale of an instrument.



  

 

 

  

    

   

 

AAAZZ  A  A  A
  =  +  =  2

In general, if 𝑍 = 𝐴𝑝 𝐵𝑞 𝐶𝑟 

Then maximum relative error in 𝑍, 

CBAZ
p q r

CBAZ


= + +

 

 

 

ax2  +  bx  +  c  =  0  a    0

  

(  1x  and  2x  )
 

  

Fig. 1.21 

t1 - While going up 

t2 - While coming down 

What if we take a height which is greater than maximum 

height covered by ball, and we are trying to find the time? 

 

  

 

ax2  +  bx  +  c  =  0  
 

  D  =  b2  −  4ac

The roots are given by 

2 4

2

b b ac
x

a

−  −
=

• If D < 0, No real roots for given equation.

Fig. 1.22 

• If D > 0, Two distinct real roots

Fig. 1.23 

• The roots are given by

2 4

2

b b ac
x

a

−  −
=

• If D = 0, Equal and real roots. Then we will get only one

root
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4.16 Error of a Measured Quantity

  Raised to a Power
The relative error in a physical quantity raised to the power 

k is the k times the relative error in the individual quantity.

Measured value of physical quantity  𝐴𝐴  and  𝐵𝐵  is 
respectively

𝐴𝐴  ± Δ𝐴𝐴  and  𝐵𝐵  ±  Δ𝐵𝐵
If a Physical Quantity  𝑍𝑍  =  𝐴𝐴2

Then maximum relative error in  𝑍𝑍,

Basic Mathematics
5.  Quadratic  Equation
A quadratic equation is an equation of second degree,

meaning it contains at least one term that is squared.

The standard form of quadratic  equation is

where  
The solution of the above quadratic equation is the values of

variable ‘x’  which will satisfy it. It basically has  two

solutions  

If we try to  calculate time when football is at height H,  then

we will observe that we will get  two  answers

Fig. 1.21

By this diagram we can easily say that at no real value of 

time, the ball is at height H1. We might will not have a

diagram every  time though.

For finding out if a quadratic equation has a real solution or

not, we shall use the  ’DISCRIMINANT’.

5.1 Discriminant of a Quadratic

Equation
Discriminant of a quadratic  equation is

represented by D.



  

Fig. 1.24 

• The roots are given by 
2

b

a
−

i. Sum of roots 
1 2

b
x x

a
= + = −

ii. Product of roots
1 2

c
x x

a
= =

D

a
=  1x  −  x2 =

Fig. 1.25 

Equation of graph: y mx c= −  

(ii) Straight line graph

Fig. 1.26 

Equation of graph: y mx=

(iii) Straight line graph

Fig. 1.27 

Equation of graph: y mx c= +  

m tan=   

90    

m ve= +  

(iv) Straight line graph

Fig. 1.28 

Equation of graph: y mx c= +  

m tan=   

90    

(v) Parabola graph

Fig. 1.29 

Equation of graph: 
2x ky=

(vi) Parabola graph

Fig. 1.30 
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iii.  Difference of the roots  

6.  Basic Graph
(i)  Straight line graph



  

Equation of graph: 
2x ky= −

(vii) Parabola graph

Fig. 1.31 

Equation of graph: 
2y kx=

(viii) Parabola graph

Fig. 1.32 

Equation of graph: 
2y kx= −

(ix) Rectangular Hyperbola graph

Fig. 1.33 

Equation of graph: xy cons tan t=

1
x

y


(x) Circle graph

Fig. 1.34 

Equation of graph: 
2 2 2x y a+ =

(xi) Ellipse graph

Fig. 1.35 

Equation of graph: 
2 2

2 2

x y
1

a b
+ =

(xii) Exponential Decay graph

Fig. 1.36 

Equation of graph: 
kxy e−=

(xiii) sin graph:

Fig. 1.37 

Max value of Graph Min value of the graph 

1 at 90 , 450 etc.  1 at 270 , 630 etc−  

• y = sin x

• The roots or zeros of y = sin x is at the multiples of 180

• The sin graph passes the x-axis as sin x = 0.

• Period of the sine function is 360
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(xiv) cos graph:

Fig. 1.38 

Max value of Graph Min value of the graph 

1 at 0, 360 , 720  1 at 180 , 540 , 900−   

• y = cos x

• sin (x + 90) = cos x

• The y = cos x graph is obtained by shifting the y = sin x,

90 units to the left

• Period of the cosine function is 360

There are a few similarities between the sine and cosine 

graphs they are: 

• Both have the same curve which is shifted along the x-

axis.

• Both have an amplitude of 1

• Have a period of 360o

The combined graph of sine and cosine function can be 

represented as follows: 

Fig. 1.39 

(xv) tan graph:

The tan function is completely from sin and cos function. The

function here goes between negative and positive infinity,

crossing through y = 0 over a period of 180

Fig. 1.40 

 

For example, ( ) ( ) ( )
3 1 1

a b , a b , 2x 3y , x
y

−  
+ + − + 


 etc. are 

binomial expressions. 

Binomial Theorem 

( )
( )n n 1 1n n 2 2

n n 1
a b a na b a b ........,

2 1

− −
−

+ = + + +


( )
( )n 2

n n 1
........x1 nx1 x

2 1

−
++= ++


Binomial Approximation 

If x is very small, compared to 1, then terms containing

higher powers of x can be neglected so )(
n

1 nx1 x  ++

If 
p a

=
q  b  

 then 
p q a b+ +

=
p  −  q  a  −  b

 

log  mn  =  log  m  +  log  n

• 
m

log nlog mlog
n

= −

• 
nlog m n log m=

• 
e 10log m 2.303log m=  
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•  y = tan x

•  The  tangent  graph  has  an  undefined  amplitude  as  the

curve tends to  infinity

It also has a period of 180o.

7.  Binomial Expansion
An algebraic expression containing two terms is called a 

binomial expression.

8. Componendo  Dividendo
Method

9. Logarithmic and
  Exponential  Function

Common formulae:

•  



  

 
 

 
 

Fig. 1.41 

Suppose that it revolves in anticlockwise direction starting 

from its initial position OX. The angle is defined as the 

amount of revolution that the revolving line makes with its 

initial position. 

From fig. the angle covered by the revolving line OP is 
POX =   

The angle is taken positive if it is traced by the revolving 

line in anticlockwise direction and is taken negative if it is 

covered in clockwise direction. 

1 = 60’ (minute) 

1’ = 60” (second) 

1 right angle = 90 (degrees) also 1 right angle 
2


=  rad 

One radian is the angle subtended at the centre of a circle by 

an arc of the circle, whose length is equal to the radius of the 

circle. 
180

57.31 rad


= 


Fig. 1.42 

To convert an angle from degree to radian multiply it by 

180



To convert an angle from radian to degree multiply it by 

180



Fig. 1.43 

(i) Point O is called origin.

(ii) XOX’ is known as X-axis and YOY’ as Y-axis.

(iii) Portions XOY, YOX’, X’OY’ and Y’OX are called I, II,

III and IV quadrants respectively.

Consider that the revolving line OP has traced out angle 

(in I quadrant) in anticlockwise direction. From P, draw

perpendicular PM on OX. Then, side OP (in front of right

angle) is called hypotenuse, side MP (in front of angle ) is

called opposite side or perpendicular and side OM (making

angle  with hypotenuse) is called adjacent side or base.

The three sides of a right-angled triangle are connected to

each other through six different ratios, called trigonometric

ratios or simply T-ratios:

perpendicular MP base OM
cossin

OPhypotenuseOPhypotenuse
 = = = =

MP OMperpendicular base
cottan

MPOM perpendicularbase
 = = = =

OPhypotenuse OPhypotenuse
cosecsec

OMbase MPperpendicular
 = = = =

It can be easily proved that: 

1 1 1
cosec sec cot

sin cos tan
 =  =  =

  
2 22 22 2 1 cot cosec1 tan secsin cos 1 +  = +  =  +  =
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10. Trigonometry and
Geometry

10.1 Angle
Consider a revolving line OP.

10.2  Trigonometrical  Ratios (or T  ratios)
Let two fixed lines XOX’ and YOY’ intersect at right  angles 

to each other  at  point O. Then,



  

 
 

  

Angle (in Degrees) 0 30 45 60 90 180 270 360 

Angle (in Radians) 0 
6



4



3



2




3

2


2

sin 0 
1

2

1

2

3

2
1 0 −1 0 

cos 1 
3

2

1

2

1

2
0 −1 0 1 

tan 0 
1

3
1 3  0  0 

cot  3 1 
1

3
0  0  

cosec  2 2
2

3
1  −1  

sec 1 
2

3
2 2  −1  1 
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Table: The T-ratios of a few standard angles ranging from 0  to 360



  

 
 

 
 

   

   

   

 

 

Remember as Add Sugar To Coffee or After School To 

College. 

 
(2n  +  )   

 

sin  (2n  +  )  =  sin  

cos(2n  +  )  =  cos  

tan  (2n  +  )  =  tan  

(ii) Trigonometric function of an angle
n

2

 
+ 

 
 will remain 

same if n is even and sign of trigonometric function will be 

according to value of that function in quadrant. 

( )sin sin −  = + 

( )cos cos −  = −   

( )tan tan −  = −   

( )sin sin +  = −   

( )sin 2 sin −  = −   

( )tan tan +  = +   

( )cos cos +  = −   

( )cos 2 cos −  = +   

( )tan 2 tan −  = −   

(iii) Trigonometric function of an angle
n

2

 
+ 

 
will be 

 

    
sin    +    =  +  cos  

  2  
    

sin    −    =  +  cos  
  2  
    

cos    +    =  −sin  
  2  
    

cos    −    =  +  sin  
  2  
    

tan    +    =  −  cot  
  2  
    

tan    −    =  +  cot  
  2  

 

sin  (−)  =  −sin  

cos  (−)  =  +  cos  

tan  (−)  =  −  tan  

 
sin  (A  +  B)  =  sin  A  cos  B  +  cos  Asin  B  

sin  (A  −  B)  =  sin  A  cos  B  −  cos  Asin  B  

( )
tan A tan B

tan A B
1 tan A tan B

+
+ =

−

sin 2A 2sin AcosA=

2

2tan A
tan 2A

1 tan A
=

−

( )cos A B cosAcosB sin Asin B+ = −

( )cos A B cosAcosB sin Asin B− = +  

( )
tan A tan B

tan A B
1 tan A tan B

−
− =

+
2 2cos2A cos A sin A= −

2 2cos2A 2cos A 1 1 2sin A= − = −

2 2A A
1 cos A 2cos , 1 cos A 2sin

2 2
+ = − =
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10.3 Four Quadrants and ASTC Rule
In  first quadrant, all trigonometric ratios are positive.

In second quadrant, only sin  and cosec  are positive.

In third quadrant, only tan  and cot  are positive.

In fourth quadrant, only cos  and sec  are positive.

10.4 Trigonometrical Ratios of General

  Angles (Reduction Formulae)
(i)  Trigonometric function of an angle  where n = 0,

1, 2, 3, ….  will be remain same.

Fig. 1.44

NOTE:

changed into co-function if n is  odd and  sign of  trigonometric

function will be according to value of that function in 

quadrant.

(iv)  Trigonometric function of an angle  –  (negative angles)

10.5 A few important trigonometric

  formulae
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Fig. 1.45 

As 
P

sin
H

 =  and P H  so 1 sin 1−   

As 
B

cos
H

 =  and B H  so 1 cos 1−   

As 
P

tan
B

 = so tan−    

−  a2  +  b2    a  sin    +  b  cos      a2  +  b2

 
  sin      ,  cos  1  tan      .   

 

1. Area of a square = (side)2

2. Area of rectangle = length × breadth

3. Area of a triangle ( )
1

heightbase
2

= 

4. Area of trapezoid 
1

2
=  (distance between parallel sides) × 

(sum of parallel sides) 

5. Area enclosed by a circle =  r2 (r = radius)

6. Surface area of a sphere = 4r2 (r = radius)

7. Area of a parallelogram = base × height

8. Area of curved surface of cylinder

( )2 r r radius and length=  = =

9. Area of ellipse = ab (a and b are semi major and semi

minor axes respectively)

10. Surface area of a cube = 6 (side)2

11. Total surface area of cone 2r r=  +  where 

2 2r r r h =  + = lateral area 

Fig. 1.46 

2. Volume of a cube = (side)3

3. Volume of a sphere 
34

r
3

=   (r = radius) 

4. Volume of a cylinder = 2r  (r = radius and  is length) 

5. Volume of a cone 
21

r h
3

=   (r = radius and h, is height) 

Note: 
222

3.14; 9.8776 10
7

 = =  =   and 

1
0.3182 0.3.= 


 

Fig. 1.47 
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10.6  Range  of  Trigonometric  Functions

Remember:  

10.7 Small Angle Approximation
If    is small,  then  &  Here  
must be in radians.

11.Basic  Geometry
11.1  Formulae for  Determination of  Area:

12.Scalars  and  Vectors

12.1  What is  a  Scalar?
A  scalar  is  a  quantity that  is fully  described  by  a  magnitude

only. It is described by just a number.

Examples:

Speed, volume, mass, temperature, power, energy, time, etc.

12.2  What is  a  Vector?
Vector is  a  physical  quantity which has  magnitude  as  well  as

direction and follows the  rule  of vector addition.

Vector quantities are  important in the  study of physics.

Examples:

Force, velocity, acceleration, displacement,  momentum, etc.

12.3  Representation  of Vectors
•  A vector is drawn as an arrow with a head and a tail.

•  The  magnitude  of  the  vector  is  often  described  by  the

  length of the arrow.

•  The arrow points in the direction of the vector.11.2  Formulae for  Determination of

  Volume:
1.V  olume of a rectangular slab = length × breadth × height =

abt
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• Vectors can be defined in two dimensional or three-

dimensional space

How to write a vector?

Vectors are generally written with an arrow over the

top of the letter. (Ex: a )

AB a=

Magnitude: 

AB a=

 

 
 

 

 

same direction. 

(2). Negative Vector 

A negative vector is a vector that has the opposite direction to 

the reference positive direction but same magnitude. 

12.5 Types of Vectors 
1. Zero Vector

2. Unit Vector

3. Position Vector

4. Co-initial Vector

5. Like and Unlike Vectors

6. Coplanar Vector

7. Collinear Vector

8. Displacement Vector

12.6 Zero Vector: 
• A zero vector is a vector when the magnitude of the vector

is zero and the starting point of the vector coincides with

the terminal point.

• In other words, a vector AB  coordinates of the point A are

the same as that of the point B then the vector is said to be

a zero vector and is denoted by O.

12.7 Unit Vector: 
A vector which has a magnitude of unit length is called a unit 

vector.  

Suppose if x  is a vector having a magnitude x  then the unit 

vector is denoted by x̂  in the direction of the vector x and has 

the magnitude equal to 1.  

Fig. 1.49 

ˆ
x

x
x

 =

It must be carefully noted that any two-unit vectors must not 

be considered as equal, because they might have the same 

magnitude, but the direction in which the vectors are taken 

might be different 

Fig. 1.50 

• A unit vector is a vector that has a magnitude of 1.

• Any vector can become a unit vector on dividing it by the

vector's magnitude.

• Unit vector in the direction of

a

 is â . 

| | | | | | 1a b c= = =  

Fig. 1.51 

| | 1

| | 1

| | 1

a iaa

b b jb

c c c k

 →=

=  →

=  →

Fig. 1.48

12.4 Properties of  Vectors
Vectors are mathematical objects,  and we will now study some

of their mathematical properties.

(1). Equality of vectors

Two vectors are equal if they have the same magnitude and the
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Fig. 1.52 

12.8 Position Vector: 
If O is taken as reference origin and P is an arbitrary point in 

space, then the vector OP is called as the position vector of the 

point. 

Position vector simply denotes the position or location of a 

point in the three-dimensional Cartesian system with respect 

to a reference origin. 

 

 

 

Fig. 1.54 

The vectors AB  and AC  are called co-initial vectors as they 

 

 

 

 

 

12.12 Collinear Vectors: 
Vectors which lie along the same line are known to be 

collinear vectors.  

12.13 Displacement Vector: 
If a point is displaced from position A to B, then the 

ABdisplacement AB represents a vector  which is known as 

the displacement vector. 

• When a vector is multiplied by a scalar quantity, then the

magnitude of the vector changes in accordance with the

magnitude of the scalar and the direction of the vector

depends on whether scalar quantity is positive or negative.

• Suppose we have a vector a,  then if this vector is

multiplied by a scalar quantity k, then we get a new vector

with magnitude as ka  and the direction depends on

 
          

 

 

Multiplying the vector with a negative number inverts the 

direction of vector. 

Now let us understand visually the scalar multiplication of the 

vector. 

Let us take the values of ‘k’ to be = 2, 3, -3, -1/2 and so on. 

 

 12.14Multiplication  of  Vectors  with  Scalar

whether k is positive or negative.

12.15  Multiplication  of  Vectors  with

  Real Numbers
Fig. 1.53

12.9 Co-initial Vector:
The vectors which have the same starting point are called co-

initial vectors.

Fig. 1.55

NOTE:

have same starting point.

12.10 Like and Unlike Vectors:
The  vectors  having  the  same  direction  are  known  as  like

vectors.  On  the  contrary,  the  vectors  having  the  opposite

direction  with  respect  to  each  other  are  termed  to  be  unlike

vectors.

12.11 Coplanar Vectors:
Three or more vectors lying in the same plane or parallel to the

same plane are known as coplanar vectors.

Fig. 1.56

12.16 Position Vector
A  vector  representing  the  straight-line  distance  and  the

direction of any point or object with respect to the  origin, is

called position vector.



 

 
 

Fig. 1.57 

OP xi y j= +

2 2 rrx yOP == + =

 

 

Fig. 1.58 

1 1OP x i y j= +

2 2OQ x i y j= +

PQ OQ OP= −

( ) ( )2 1 2 1x x i y y j= − + −

( ) ( )
2 2

2 1 2 1PQ x x y y= − + −

Fig. 1.59 

2 2 2 rrx y zOP == + + =

 

 

 

Fig. 1.60 

OP xi y j= +

2 2 rrx yOP == + =

cos OAOA xi r =  =

sin OByi rOB =  =

tan
OB

OA
 =

ˆOA xi=

ˆOB yi AD= =

ˆOC zk DP= =
In ODP

ˆ ˆ ˆOP OD DP xi yj zk= + = + +

Fig. 1.61 

r xi y j zk= + +

2 2 2| r | x y z= + +

r
r unit vector along r

| r |
= →

ˆ,OA xi= is the component of vector r in X-axis 

ˆ,OB yj=  is the component of vector r in Y-axis 

ˆ,OC zk= is the component of vector r in Z-axis 
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12.17 Displacement Vector
A  vector  representing  the  straight-line  distance  and  the

direction of any point or object with respect to another point is

called displacement vector.

12.18 Components of a Vector
In  physics, when you break a vector into its parts, those parts

are called its components.

Typically,  a  physics  problem  gives  you  an  angle  and  a
magnitude to define a vector
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• We have already studied about it in previous classes. Just

to recall:

• Unit vector in the direction of

a

 is â

 

 

Fig. 1.63 

Can we add these vectors directly as (8 m + 6 m) = 14 m ? 

(a) Yes

(b) No

Sol: We add vectors considering their directions.

So, now we will learn about the addition of vectors.

13.1 Triangle Law of Vector Addition 

Fig. 1.64 

 

 

 

 

Fig. 1.66 

R A B C D E= + + + +

OA AB BC CD DE OE+ + + + =

13.4 Polygon Law of Vector Addition 
• Resultant of two unequal vectors cannot be zero.

• Resultant of three coplanar vectors may or may not be zero.

• Resultant of three non-coplanar vectors cannot be zero,

minimum number of non-coplanar vectors whose sum can

be zero is four.

• Polygon law should be used only for diagram purpose for

calculation of resultant vector (For addition of more than 2

vectors), we use components of vector.

• Minimum no. of coplanar vector for zero resultant is 2 (for

equal magnitude) & 3 (for unequal magnitude).

13.5 Addition of Vectors 
Adding Vectors Analytically 
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12.19 Finding a Unit Vector (2D/3D) 13.2  Both  Addition  and  Subtraction  can

  be shown as:

Fig. 1.65

13.3 Polygon Law of Vector Addition
It states that if number of vectors acting on a particle at a time

are represented in magnitude and direction by the various sides

of an open polygon taken in  same order, their resultant vector

R is represented in magnitude and direction by the closing side

of  polygon  taken  in  opposite  order.  In  fact,  polygon  law  of

vectors is the outcome of triangle law of vectors.

Fig. 1.62

It will be more clear by solving some problems pertaining

2D/3D cases.

13. Rules of Vector Algebra
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1 1 1r x i y j= +  

2 2 2r x i y j= +

1 2r r r= +

( ) ( )1 1 2 2x i y j x i y j= + + +

1 1 2 2 1 2 1 2x i y j x i y j x i x i y j y j= + + + = + + +

( ) ( )1 2 1 2x x i y y j= + + +

13.6 Addition of Vectors: Components 
Step 1: Identify the x-and y-axes that will be used in the 

problem.  

Fig. 1.67 

Then, find the components of each vector to be added along 

the chosen perpendicular axes. Use the equations Ax = A cos𝜃, 

Ay = A sin𝜃 to find the components. In figure, these 

components are Ax, Ay, Bx and By. 

The angles that vectors A and B make with the x-axis are 𝜃A 

and 𝜃B. respectively. 

Step 2: Find the components of the resultant along each axis 

by adding the components of the individual vectors along that 

axis. That is, as shown in figure, 

Rx = Ax + Bx 

and  Ry = Ay + By 

Fig. 1.68 

ALWAYS REMEMBER: 

A Vector can be changed either by changing its 

magnitude or direction or by changing both of them. 

components along the same axis, say the x-axis, are vectors 

along the same line and, thus, can be added to one another like 

ordinary numbers. The same is true for components along the 

y-axis. So, resolving vectors into components along common

axes makes it easier to add them. Now that the components of

R are known, its magnitude and direction can be found.

Fig. 1.69 

Step 3: To get the magnitude R of the resultant, use the 

Pythagorean theorem. 

2 2

x yR R R= +

Step 4: To get the direction of the resultant. 

1tan
y

x

R

R
 −  

=  
 

Fig. 1.70 

13.7 Parallelogram Law of Vector 

Addition 

Fig. 1.71 

Suppose the magnitude of a a=  and that of b b= . 

What is the magnitude of a b+  and what its direction? 

Suppose the angle between a  and b  is 𝜃. 

Fig. 1.72 
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It is easy to say from fig. that 

( ) ( )
2 22AD AB BE DE= + +

( ) ( )
2 2

cos sina b b = + +

2 22 cosa ab b= + +

Thus, the magnitude of is 

2 2 2 cosa b ab + +

Its angle with a is 𝛼 where, 

sin
tan

cos

DE b

AE a b





= =

+

13.8 Some Properties of Vector Addition 

Fig. 1.73 

Fig. 1.74 

13.9 Subtraction of Vectors 
• Subtracting vectors algebraically

x ya a i a j= +

x yb b i b j= +

( ) ( )x y x ya b a b a i a j b i b j− = + − = + + − −

( ) ( )x x y ya b i a b j= − + −

• Subtracting vectors geometrically

Fig. 1.75 

13.10 Change in Vectors 

Fig. 1.76 

Fig. 1.77 

• A vector can be multiplied by another but may not be

divided by another vector.

• There are two kinds of products of vectors used broadly

in physics and engineering.

• One kind of multiplication is a scalar multiplication of

two vectors. Taking a scalar product of two vectors

results in a number (a scalar), as its name indicates.

• Scalar products are used to define work and energy

relations.

• For example, the work that a force (a vector) performs on

an object while causing its displacement (a vector) is

defined as a scalar product of the force vector with the

displacement vector.

• A quite different kind of multiplication is a vector

multiplication of vectors. Taking a vector product of two

vectors returns a vector, as its name suggests.

• Vector products are used to define other derived vector

quantities.

14.Product of Two Vectors
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• For example, in describing rotations, a vector quantity

called torque is defined as a vector product of an applied

force (a vector) and its distance from pivot to force (a

vector).

• It is important to distinguish between these two kinds of

vector multiplication because the scalar product is a scalar

quantity and a vector product is a vector quantity.

14.1 Scalar Product or Dot Product 

Fig. 1.78 

Dot product of vector 

a

 and b  is denoted by a b  

cosa ba b  =  

0     

• Dot product gives us a scalar quantity.

• Angle between vectors, cos
a b

ba



=

Fig. 1.79 

• When 0 , =   

cos a ba ba b  = =

a b is maximum 

Fig. 1.80 

• When , =  

cos a ba ba b  = − =

a b is minimum. 

Fig. 1.81 

• , a b 0
2


 =  =

14.2 Properties of Dot Product 

cosa ba b  =

cosb ab a  =

Fig. 1.82 

• Dot product is commutative.

b a a b = 

• Dot product is distributive over addition or subtraction.

( )a b c a b a c  =   

• When vectors are given in component form,

ˆˆˆˆ andx y x yB B i B jA A i A j = += +

( ) ( )ˆ ˆ ˆ ˆ
x y x yA B A i A j B i B j = +  +

• We know that, ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi i j j 1 and i j j i 0 =  =  =  =  

x xA B A B Ay By  = + +

• Thus, for 3D, when

yx z
ˆ ˆ ˆA A i A j A k= + + and x y z

ˆ ˆ ˆB B i B j B k= + +

x x y y z zA B A B A B A B = + +

14.3 Application of Dot Product in

Physics
Work done (W): It is defined as the scalar product of the 

force ( )F , acting on the body and the Displacement ( )s

produced. 

Thus W F s=   

Instantaneous power (P): It is defined as the scalar product 

of force ( )F  and the instantaneous velocity ( )v  of the body.

Thus P F v=   
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Magnetic flux (𝜙): The magnetic flux linked with a surface 

is defined as the scalar product of magnetic intensity ( )B

and the area ( )A  vector. Thus B A =   

Note: As the scalar product of two vectors is a scalar 

quantity, so work, power and magnetic flux are all scalar 

quantities. 

14.4 Cross Product of Two Vectors 
ˆsin na ba b  = 0 180   

a b
n

a b


=



n̂ is the unit vector in direction normal to the a and b 

Fig. 1.83 

It is also called Vector Product. 

• Vector product is distributive over addition i.e.,

( )A B C A B A C + =  + 

14.5 Direction of Cross Product 
Right Hand Thumb Rule: Curl the fingers of the right hand in 

such a way that they point in the direction of rotation from 

vector a to b  through the smaller angle, then the stretched 

thumb points in the direction of a b  

Fig. 1.84 

Direction of a b  

Direction of b a  

Fig. 1.85 

( )b a | b || a | sin n =  −

14.6 Properties of Vector Product 
• Vector product is anti - commutative i.e., A B B A = − 

• Vector of two parallel or antiparallel vectors is a null

vector. Thus

( ) ˆA B ABsin 0 or 180 n 0 =   =

• Vector product of a vector with itself is a null vector.

A A AAsin 0 n 0 =  =

i i j j k k 0 =  =  =  

• The magnitude of the vector product of two mutually

perpendicular vectors is equal to the product of their

magnitudes.

| A B | ABsin90 AB =  =

• Sine of the angle between two vectors. If 𝜃 is the angle

between two vectors A  and B  , then

| A B | | A || B | sin =   

A B
sin

BA


 =

• If n̂  is a unit vector perpendicular to the plane of vectors

A and B , then 
A B

n
| A B |


=



• Vector product of orthogonal unit vectors

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi j k, j k i,k i j =  =  =

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆj i k,k j i, i k j = −  = −  = −

Fig. 1.86 

UNITS AND MEASUREMENTS & BASIC MATHEMATICS



UNITS AND MEASUREMENTS & BASIC MATHEMATICS 

 
 

Quantity Name of Units Symbol 

Length Meter m 

Mass Kilogram kg 

Time Second s 

Electric Current Ampere A 

Temperature Kelvin K 

Amount of Substance Mole mol 

Luminous Intensity Candela Cd 

• Supplementary Units:

Quantity Name of Units Symbol 

Plane angle Radian rad 

Solid angle Steradian sr 

•

•

•

 

•

•

•

•

•  

•

  

2.

•

Summary

•  Any quantity which can be measured is called a physical

  quantity.

•  Fundamental Unit:

Dimension

Dimensions of a physical quantity are the powers to 

which the fundamental units must be raised in order to 

get the unit of derived quantity.

Dimensional analysis is a tool to find or check relations 

among physical quantities by using their  dimensions.

By using dimensional analysis,  we can

1.C  onvert a physical quantity from one system of unit to

another.

2.C heck the dimensional consistency of equations

3.D educe relation among physical quantities.

Limitations of Dimensional Analysis

In some cases, the constant of proportionality also 

possesses dimensions. In such cases, we cannot use this 

system.

If one side of the equation contains addition or 

subtraction of physical quantities, we cannot use this 

method to derive the expression.

Systematic Errors

Systematic error is a consistent, repeatable error 

associated with faulty equipment or a flawed experiment

design. These errors are usually caused by measuring 

instruments that are incorrectly calibrated.

These errors cause readings to be shifted  one way (or the

other) from the true reading.

Causes of Systematic Errors

1.Z  ero Error

Example:

•  There is not  any weight,  and the weighing machines

  are not showing zero.

System of Units:

Faulty Instrument

Example:

If a ruler is wrongly calibrated,

or if it expands, then all the 

readings will be too low



 

 
 

(or all too high). 

3.

 

•

•

ax2  +  bx  +  c  =  0   a    0

•

ax2  +  bx  +  c  =  0   
 

D  =  b2  −  4ac

The roots are given by 

2 4

2

b b ac
x

a

−  −
=

•

 

  

•

•

•

•

•

•

•  

•

2 2

x yR R R= +

To get the direction of the resultant. 

1tan
y

x

R

R
 −  

=  
 
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Personal Error

Example:

If someone have a habit of taking measurements 

always from above the reading, then due to parallax

you will get a  systematic error and all the readings 

will be too high.

Now,  let’s learn about some common terms used 

during, measurements and error analysis.

Accuracy and Precision

•  Accuracy is an indication of how close a

  measurement is to the accepted value.

•  An  accurate experiment has a low systematic error.

  Precision is an indication of the agreement among a

  number of measurements.

•  A precise experiment has a low random error

Quadratic Equation

A quadratic equation is an equation of second degree,

meaning it contains at least one term that is squared.

The standard form of quadratic equation is

where  

Discriminant of a Quadratic  Equation:

Discriminant of a quadratic  equation 

is represented by D.

Binomial Expansion

A binomial is a polynomial with two terms.

There are a few similarities between the sine and  cosine 

graphs.  They are:

•  Both have the same curve which is shifted along the

  x-axis.

•  Both have an amplitude of 1.

•  Have a period of 360o  or 2𝜋𝜋  radians.

Vectors

•  Scalar and Vector

•  Representation and Properties of Vectors

•  Types of Vectors

Negative  Vector:

A negative vector is a vector that has the opposite 

direction to the reference positive direction.

Types of Vectors

(i)  Zero Vector

(ii)  Unit Vector

(iii)  Position Vector

(iv)  Co-initial Vector

(v)  Like and Unlike Vectors

(vi)  Coplanar  Vector

(vii)  Collinear Vector

(viii)  Displacement Vector

A unit vector is a vector that has a magnitude of 1.

Any vector can become a unit vector on dividing it by

the vector's magnitude.

A vector representing the straight-line distance and the 

direction of any point or object with respect to the origin,

is called position vector.

Polygon Law:  It states that if number of vectors acting 

on a particle at a time are represented in magnitude and 

direction by the various sides of an open polygon taken 

in same order, their resultant vector R is represented in 

magnitude and direction by the closing side of polygon 

taken in opposite order.

Addition of  Vectors Components:

To get the magnitude R of the resultant, use the 

Pythagorean theorem:



 

 
 

•  

a b+ is 
2 2a b 2abcos+ + 

Its angle with a  is 𝛼 where 
bsinDE

tan
a bcosAE


 = =

+ 

•

x ya a i a j= +  

x yb b i b j= +  

( ) ( )x y x ya b a b a i a j b i b j− = + − = + + − −

( ) ( )x x y ya b i a b j= − + −

• Scalar Product or Dot Product

a b cosa b  =  

0      

• Dot product gives us a scalar quantity.

• Angle between vectors,

a b
cos

ba


 =

• Dot product is commutative.

b a a b =   

• Dot product is distributive over addition or subtraction.

( )a b c a b a c  =   

• Cross Product:

ˆa b sin na b  = 0 180    

n̂ is the unit vector in direction normal to the a and b 

• Properties of Cross Product:

• Vector product is anti - commutative i.e.,

A B B A = − 

• Vector product is distributive over addition i.e.,

( )A B C A B A C + =  + 

• Vector of two parallel or antiparallel vectors is a null

vector. Thus

( ) ˆA B ABsin 0 or 180 n 0 =   =

• Vector product of a vector with itself is a null vector.

A A AAsin 0 n 0 =  =

• i i j j k k 0 =  =  =

• ( ) ( )a b b a = − 

• ( )a b c a b a c + =  + 

• i i j j k k 0 =  =  =

• i j k j i k =  = −

• j k i k j i =  = −

• k i j i k j =  = −

• 1 2 3 1 2 3If a a i a j a k and b i b j b k, then= + + = + +

321

321

i j k

aaaa b

bbb

 =

( ) ( ) ( )2 3 3 2 1 3 3 1 1 2 2 1a b a b i a b a b j a b a b k= − − − + −
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Addition of vectors:  Law of Parallelogram of vector

addition. Thus, the magnitude of

Vector Subtraction:



 

 

 

 

 

 

 
 

  
 

 
 

1. Area Length × breadth [L2] [M0L2 T0] 

2. Volume Length × breadth × height [L3] [M0L3 T0] 

3. Mass density Mass/volume 
[M]/[L3] or 

[ML3] 
[ML3T0] 

4. Frequency 1/time period 1/[T] [M0L0T1] 

5. Velocity, speed Displacement/time [L]/[T] [M0LT1] 

6. Acceleration Velocity/time [LT1]/[T] [M0LT2] 

7. Force Mass × acceleration [M][LT2] [MLT2] 

8. Impulse Force × time [MLT2][T] [MLT1] 

9. Work, Energy Force × distance [MLT–2][L] [ML2T–2] 

10. Power Work/time [ML2T–2]/[T] [ML2T–3] 

11. Momentum Mass × velocity [M][LT1] [MLT1] 

12. Pressure, stress Force/area [MLT2]/[L2] [ML1T–2] 

13. Strain 
Change in dim ension

Original dim ension
 [L]/[L] [M0L0T0] 

14. Modulus of elasticity Stress/strain 

1 2

0 0 0

ML T

M L T

  

  

 [ML1T2] 

15. Surface tension Force/length [MLT2]/[L] [ML0T2] 

16. Surface energy Energy/area [ML2T2]/[L2] [ML0T2] 
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Dimensional Formulae of Physical Quantities

Physical quantity
Relationship with other physical

  quantities
Dimensions

Dimensional
  formula

S. No.



 
 

 

 
 
 
 

 

 

17. Velocity gradient Velocity/distance [LT–1]/[L] [M0L0T1] 

18. Pressure gradient Pressure/distance [ML–1T2]/[L] [M1L2T2] 

19. Pressure energy Pressure × volume [ML1T2][L3] [ML2T2] 

20. Coefficient of viscosity Force/area × velocity gradient 

2

2 1

MLT

L LT / L





  

      

 [ML1T1] 

21. 
Angle, Angular 

displacement 
Arc/radius [L]/[L] [M0L0T0] 

22. 
Trigonometric ratio 

 sin , cos , tan , etc.    
Length/length [L]/[L] [M0L0T0] 

23. Angular velocity Angle/time [L0]/[T] [M0L0T1] 
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It is the actual path 

traversed by the 

object during the 

course of motion. 

It is the difference 

between the initial and 

the final positions  

2 1x x – x = where, 

 

  
 

Motion In  a  Straight Line
Important Terms

1.  Mechanics
It is the branch of Physics, which deals with the study of 

motion of physical objects. Mechanics can be broadly 

classified into following branches

1.1 Statics
It is the branch of mechanics, which deals with the study of 

physical objects at  rest.

1.2 Kinematics
It is the branch of mechanics, which deals with study of 

motion of physical bodies without taking into account the 

factors, which causes motion.

1.3 Dynamics
It is the branch of mechanics, which deals with the study of 

motion of physical bodies taking into account the factors 

which causes motion.

2.  States of Objects
2.1 Rest
•  An object is said to be at rest if it does not change its

  position with  respect to the surrounding.

•  The white board in the classroom is at rest with respect

  to the classroom

2.2 Motion
•  An object is said to be in motion if it changes its

  position with respect to the surrounding.

•  When we walk, run or ride a bike we are in motion

  with respect to the ground.

NOTE:

3. While  Studying this 
Chapter

•  We will treat the object as  Point mass  object

•  An object can  be considered as a point mass object if

  during the course of motion, it covers distances much

  greater than its own size.

•  We shall confine ourselves to the study of rectilinear

  motion

•  Rectilinear motion is the study of motion of objects

  along a straight line.

4. Position, Distance  &
Displacement

4.1 Position
•  Position of an object is always defined with respect to

  some reference point which we generally refer to as

  origin.

4.2 Distance
•  It is the actual path traversed by the body during the

  course of  motion

•  SI unit is ‘m’.

•  Dimension is [M0L1T0]

4.3 Displacement
•  It is the shortest path joining initial and final position

  of the object.

•  SI unit is ‘m’

•  Dimension is [M0L1T0]

•  It is a vector quality.

Table 2.1:  Difference between Distance &

Displacement

Rest and Motion are relative

Rest and motion depend upon the  observer. The

object in one situation may be at rest whereas

the same object in another situation may be in 

motion.  For Example, the driver of a moving car

is in motion with respect to an observer standing

on the ground whereas, the same driver is at rest

with respect to the man (observer) in the 

passenger’s seat.

Distance Displacement
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2x and 
1x are final  

and initial position 

respectively. 

It is a scalar 

quantity. 
It is a vector quantity. 

The distance 

travelled by an object 

during the course of 

motion is never 

negative or zero and 

is always positive 

The displacement of an 

object may be positive, 

negative or, zero 

during the course of 

motion. 

 

The distance travelled is never less than 

displacement (in magnitude). 

Displacement Distance . 

 

If the motion of an object is along a straight line 

and in the same direction, the magnitude of 

displacement is equal to the total path length. In 

that case, the magnitude of average velocity is 

equal to the average speed. This is not always 

the case. 

The average velocity tells us how fast an object 

has been moving over a given interval but does 

not tell us how fast it moves at different instants 

of time during that interval. 

 

  

 

 

  

 

 

  (  x  )   (t  )  

 

 

• It is velocity at an instant of time t. The velocity at an

instant is defined as the limit of the average velocity as

the time interval t  becomes infinitesimally small.

• Instantaneous velocity =
t 0

x
lim

t →




  = dx/dt 
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6. Average velocity and 
Average Speed

6.1 Average  Velocity
•  It is defined as the change in position or displacement

divided by the time intervals  in which the

displacement occurs.

•  SI unit of velocity is m/s, although km/hr  is used in

  many everyday applications

•  Dimension is [M0L1T-1]

6.2 Average  Speed
•  It is defined as the total path length travelled divided

  by the total time interval during which the motion has

  taken place.

•  SI unit is m/s.

•  Dimension [M0L1T-1]

7. Instantaneous  Velocity and
  Instantaneous  Speed

7.1 Instantaneous  Velocity

NOTE:

NOTE:

5. Scalar and Vector 
Quantities

5.1 Scalar  Quantities
The physical quantities which have only magnitude but no

direction, are called scalar quantities.

Example:  -  mass, length, time, distance, speed, work,

temperature.

5.2 Vector  Quantities
The physical quantities which have magnitude as well as 

direction, are called vector quantities.

Example:  -  displacement, velocity, acceleration, force,

momentum, torque

•  The quantity on the right-hand side of equation is the

  differential coefficient of x with respect to t and is

  denoted by dx/dt.

•  It is the rate of change of position with respect to time

  at that instant.

•  SI unit is m/s

•  Dimension is [M0L1T-1]

7.2  Instantaneous Speed
•  Instantaneous speed or speed is the magnitude of

  velocity at any particular instant of time.

•  SI unit is m/s

•  Dimension is [M0L1T-1]



     

SCAN CODE 
Motion in a Straight line 

 

Table 2.2: Difference between Speed & Velocity 

Speed Velocity 

It is defined as the total 

path length travelled 

divided by the total 

time interval during 

which the motion has 

taken place. 

It is defined as the change 

in position or 

displacement divided by 

the time intervals, in 

which displacement 

occurs of. 

It is a scalar quantity. It is a vector quantity. 

It is always positive 

during the course of the 

motion. 

It may be positive, 

negative or zero during 

the course of the motion. 

It is greater than or 

equal to the magnitude 

of velocity. 

It is less than or equal to 

the speed. 

• The average acceleration over a time interval is

defined as the change of velocity divided by the time

interval: 
)(

( )
12

2 1

vv
a

t t

−
=

−
 where, v2 and v1 are velocities 

  

 

t 0

v
lim

t
a

 →




=

dv / dt=

(for very small interval of time dt)

• SI unit is m/s2

• Dimension is [M0L1T-2]

• When the acceleration is uniform, obviously,

instantaneous acceleration equals the average

acceleration over that period.

• Since velocity is a quantity having both magnitude and

direction, a change in the velocity may involve either

or both of these factors.

• Acceleration, therefore, may result from a change in

the speed (magnitude), a change in direction or

changes in both.

 

We will restrict ourselves to the study of 

constant acceleration for this chapter. In this 

case average acceleration equals the constant 

value of acceleration during the interval. 

 

 
 

 

 

 

(ii) 
21

atutS
2

= +

(iii) v2 = u2 + 2as

(iv) Distance travelled in nth second

( )n

a
12nuS

2
= + −

If a body moves with uniform acceleration and velocity  

changes from u to v in a time interval, then the velocity at 

the mid point of its path 
( )2 2u v

2

+
. 

If an object is falling freely (u = 0) under gravity, then 

equations of motion 

(i) v = u + gt

(ii) 
21

gtuth
2

= +

  

 

If an object is thrown upward then g is replaced 

by – g in above three equations. It thus follows 

that 

(i) Time taken to reach maximum height

T u / g=

(ii) Maximum height reached by the body

MOTION IN A STRAIGHT LINE

•  Like velocity, acceleration can also be positive,

  negative or zero.

NOTE:  -

9.  Kinematics  Equations:
9.1  Equations of Uniformly  Accelerated

  Motion
If a body starts with velocity (u) and after time t its velocity

changes to v, if the uniform acceleration is a and the 

distance travelled in time t in s,  then the following relations

are obtained, which are called equations of uniformly 

accelerated motion.

(i)  v = u + at

8.  Acceleration
8.1 Average Acceleration

at time t2  & t1.

•  It is the average  change of velocity per unit time.

•  SI unit is m/s2.

•  Dimension is [M0L1T-2].

8.2 Instantaneous Acceleration
•  Instantaneous acceleration is defined in the same way

  as the instantaneous velocity:
10.  Vertical Motion Under

Gravity

(iii)  v2  = u2  + 2gh

NOTE:
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2

maxh u / 2g=

(iii) A ball is dropped from a building of height

h and it reaches after t seconds on earth. From

the same building if two ball are thrown (one

upwards and other downwards) with the same

velocity u and they reach the earth surface after

t1 and t2 seconds respectively, then

1 2t tt =

(iv) When a body is dropped freely from the top

of the tower and another body is projected

horizontally from the same point, both will reach

the ground at the same time.

 
 

 

 

 

 

 

 Fig. 2.1 

One simple way to see variation of y with x 

Rate of change of y with change in 
y

x
x


=


Graphically one can see that 
y

tan
x


= 



Now let’s say x1 approaches to x2 then x 0 → or it will  

be very-very small, we write it dx. In that way, y approaches  

to y2 and y 0 → , written as dy. So, 

Rate of change of y with respect to 
dy

x
dx

= (at one point) 

Graphically it is tangent of curve on given point. 

Fig. 2.2 

dy

dx
= slope of tangent on curve between y and x at one  

point. Mathematically that is called differentiation of y with 

respect to 
dy

x
dx

=

In physics, first we will study the linear motion of an object 

where position of object is represented by x which changes  

with time t, then 

and that is equal to velocity (magnitude of velocity) 

dx
v

dt

dx
v

dt

=

=

Above expression will give speed. 

Similarly, when velocity changes with time then we say

dv
a

dt
=  acceleration 

so, we can define

Velocity   that is rate of change of position with respect 

to t. 
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11.  Calculus
11.1  Differentiation of a Function
If we say y as a function of x  then we write

y = f (x)

x = Independent variable

y = Dependent variable.

In physics we study variation of a quantity y with respect to 

quantity x and we also study rate at which y changes when x

changes.
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Acceleration  that is rate of change of velocity with 

respect to t. 

Tips: 
If ( )x f t=

( )

( )
2

2

dx
v x f t

dt

dv d dx d x
a x f t

dt dt dt dt

= = =

 
= = = = = 

 

 

 

( )

( )

n n 1

0

2

2

x x

x x

1. y x y nx

2. y c y cx y 0

3. y sin x y cos x

4. y cos x y sin x

5. y tan x y sec x

6. y cot x y cosec x

1
7. y n x y

x

8. y e y e

9. y a y a n x

−= =

=  = =

= =

= = −

= =

= = −

= =

= =

= =

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )

( )

1 2 1 2

1 2 1 2 1 2

1 2 1 1 2

2

2 2

1. y f x f x y f x f x

2. y cf x y cf x

3. y f x f x y f x f x f x f x

f x f x f x f x f x
4. y y

f x f x

 = + = +

= =

 = = +

 −
= =

  

 
 

 

( ) ( )
dy

f ' z f ' x
dx

= 
dy dz

dz dx
= 

12. Increasing and Decreasing
Function

12.1 Increasing Function 
Suppose y = f (x) and if x is increasing, y also increases, 

then the function is increasing function. There are two types 

of possible graphical variations. 

Fig 2.3 

2 1

2 1

2 1

tan tan

dydy

dxdx

  

   

 

If slope is increasing that mean first derivative is also 

increasing, so second derivative should be +ve,
2

2

d y
0

dx


Fig. 2.4 

2 1

2 1

2 1

tan tan

dydy

dxdx

  

   

 

If slope decreasing that means first derivative is decreasing 

that means second derivative will be negative. 
2

2

d y
0

dx


MOTION IN A STRAIGHT LINE

11.2  Standard Rules and Formulae  of

  Differentiation:

Rules

11.3  Chain  Rule
If y = f(z) and z = f(x),  then differentiation of y with respect

to x can be given by:
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(i) Increasing graph with decreasing slope will

be Concave downward.

(ii) Increasing graph, with increasing slope will

be Concave upward.

 

     Fig. 2.5 

1 2

2 1

2

tan tan


   

 

Slope is negative but increasing so 
2

2

d y
0

dx


2

2

d ydy
0, 0

dx dx
 

  Fig. 2.6 

1 2

1 2tan tan

  

  

Slope decreasing and negative so second derivative is 

negative. 

  
 

    Fig. 2.7 

2. 

  

 

If the graph is parabola, then second derivative 

will be constant 
2x at bt c if a 0

x 0 and constantx 2at b

if a 0x 2a

x 0 and constant

= + + 

= +

=



So if acceleration is constant then x and t graph 

will be parabola. 

(ii) Increasing graph, with increasing slope will

be Concave upward.

MOTION IN A STRAIGHT LINE

NOTE: 13.1  Applications  in  Physics:
1.

13.  Decreasing Graphs
On increasing value of x, y decreases.

There also two types of graphs.

Fig. 2.8

NOTE:
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     Fig. 2.9 

 

(Condition to locate and check point of maxima) 

dy
0

dx
=

1

2

2

x

d y
0

dx


 

 

 

2

2

2

x

dy
0

dx

d y
0

dx

=



 

 

Fig. 2.10 

2

2

dy
0

dx

d y
0

dx



=

 

22

1 1

xx x

x x x

A dA dA
=

=

= = 

That is called area of graph with integration from 
1x to 

2x . 

1x = lower limit of integration 

2x = upper limit of integration 

Fig 2.11 

2

1

x

x

ydx = Definite Integral 

  ydx  =    

 

 

 

( )

)(

n 1
n

x x

x
c1. x dx

n 1

1
2. dx n x c

x

3. sin xdx cos x c

4. cos xdx sin x c

c5. tan xdx n sec x

6. e dx e c

+

= +
+

= +

= − +

= +

= +

= +












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14. Maxima Minima of  a
  Function

16.  Integration
Integration of a function. Let y = f (x) Area of shaded region

of curve is dA = ydx. Total area bounded by curve y = f (x)

where x1  is the point of maxima.

Minima

(Condition to locate and check point to minima)

Maxima

where x1  is the point of maxima.

15. Point of Inflexion
Concavity change at A is known as the point of inflexion.

Indefinite Integral (without limit)

Integration is reverse process of differentiation in which we 

find a function for which the given function is the derivative

of function.

16.1  Formulae
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( ) ( )

( ) ( ) ( ) ( )

1. dx x c

2. cf x dx c f x dx

3. f x g x dx f x dx g x dx

= +

=

+ = +  



 

 

 

Like differentiation, rules of substitution are also 

applicable to integration as well in a similar 

way. 

 

2 2

1 1

x t

x t

dx
v

dt

dx vdt

=

= 

2

1

t

2 1

t

x x vdt− = = Change in position or displacement. 

(Area under the curve of v and t graph is displacement) 

2

1

tv

u t

dv
a

dt

dv adt

=

= 

2

1

t

t

v u adt− = = Change in velocity.

 

• In a uniform motion a body covers equal distance in

equal intervals of time.

• Velocity is constant during the course of motion.

• Acceleration is zero during the course of motion.

If we try to represent the same on the number line with

x, v, a on the Y-axis and t on the X-axis then we will

have

MOTION IN A STRAIGHT LINE

16.2  Rule of Integration

NOTE:

16.3  Applications in Physics

(Area under  the curve of a and t graph is change in  velocity)

17.  Graphs
17.1 Uniform  Motion
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S.No
Displacement – Time 

graph 

Velocity – Time graph 

velocity = Slope of x – t 

graph 

Acceleration – Time graph 

Acceleration = Slope of v – t 

graph 

(i) 

nature of slope: positive 

magnitude of slope: 

constant 

nature of slope: zero 

magnitude of slope: 

constant 

nature of slope of a – t: zero 

magnitude of slope: constant 

(ii) 

nature of slope: negative 

magnitude of slope: 

constant 

nature of slope: zero 

magnitude of slope: 

constant 

nature of slope: zero 

magnitude of slope: Constant 

 

S. No
Displacement – Time 

graph 

Velocity – Time graph 

velocity = Slope of x – 

t graph 

Acceleration – Time graph 

Acceleration = Slope of v – t 

graph 

(i) 

(ii) 

v

t

MOTION IN A STRAIGHT LINE

17.2 Non-Uniform  Motion
•  In a non-uniform motion, a body covers unequal distances in  equal intervals of time.

•  Uniformly accelerated motion

•  Accelerated motion

•  Magnitude of velocity increases or decreases with time
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(iii) 

nature of slope: positive 

magnitude of slope: 

Increasing 

nature of slope: positive 

magnitude of slope: 

constant 

Slope of a - t graph 

gives jerk, i.e., 
da

J 0
dt

= =  

(iv) 

nature of slope: positive 

magnitude of slope: 

decreasing 

nature of slope: negative 

magnitude of slope: 

constant 

Slope of a - t graph 

gives jerk, i.e., 

J = = 0 
da

dt

(v) 

Nature of slope: negative 

magnitude of slope: 

decreasing 

Nature of slope: negative 

Magnitude of slope: 

constant 

Nature of slope: negative 

Magnitude of slope: constant 

(vi) 

nature of slope: negative 

magnitude of slope: 

decreasing 

nature of slope: positive 

magnitude of slope: 

constant 

nature of slope: positive 

magnitude of slope: constant 

MOTION IN A STRAIGHT LINE
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x  =  x2  −  1x  

v
t

=


  x

On an x-t graph. the average velocity over a time 

Interval is the slope of the line connecting the initial 

and final positions corresponding to that interval. 

6. Average Speed is the ratio of total path length

traversed and the corresponding time Interval.

7. Instantaneous velocity or simply velocity is defined as

the limit of the average velocity as the time interval

t  becomes infinitesimally small

t 0 t 0

dxx
v lim v lim

t dt →  →


= = =



The velocity at a particular instant is equal to the slope 

of the tangent drawn on position-time graph at that 

instant. 

8. Average acceleration is the change in velocity divided

by the time interval during which the change occurs:

v
a

t


=


9. Instantaneous acceleration is defined as the limit of

the average acceleration as the time interval at goes to

zero:

t 0 t 0

dvv
a lim a lim

t dt →  →


= = =



The acceleration of an object at a particular time is the 

slope of the velocity-time graph at that instant of time. 

For uniform motion. acceleration is zero and the x-t 

graph is a straight line inclined to the time axis and the 

v t−  graph is a straight line parallel to the time axis. 

For motion with uniform acceleration. x - t graph is a 

parabola while the v t−  graph is a straight line 

inclined to the time axis. 

10. The area under the velocity-time curve between times

t1 and t2 is equal to the displacement of the object

during that interval of time.

11. For objects in uniformly accelerated rectilinear

motion. the five quantities, displacement x, time taken

t. Initial velocity
0v , final velocity v and acceleration 

a are related by a set of simple equations called 

kinematic equations of motion: 

0

2

0

22

0

v v at

1
x v t at

2

v v 2ax

= +

= +

= +

MOTION IN A STRAIGHT LINE

NCERT Corner
(Some important Points to Remember)
1.  An object is said to be in motion if its position changes

  with time. The position of the object can be  specified

  with reference to a conveniently chosen origin. For

  motion in a straight fine. position to the right of the

  origin is taken as positive and to the left as negative.

2.P  ath length is defined as the total length of the path 

traversed by an object.

3.D  isplacement is the change in position:  

Path length is greater or equal to the magnitude of the

displacement between the same points.

4.A  n object is said to be in uniform motion in a straight 

line if its displacement is equal in equal intervals of 

time. Otherwise, the motion is said to be nonuniform

5.A  verage velocity is the displacement divided by the 

time Interval in which the displacement occurs:
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The position vector r of a particle P located in a plane with 

reference to the origin of an x-y coordinate system is given 

by ˆ ˆr xi yj= +  

     Fig 3.1 

Suppose the particle moves along the path as shown to a 

new position P1 with the position vector r  

1 1 1
ˆ ˆr x i y j= +

change in position = displacement 

=  1r  −  r  =  (x1î  +  1y  ĵ)  −  (xî  +  ŷj)
 

=  (  x1  −  x  )  î  +  (  1y  −  y)  ĵ
=  xî  +    ŷj

 

r  =  1r  −  r

 

av

avg x y

ˆ ˆr xi yj
v

tt

ˆ ˆv v i v j

  + 
= =



=  + 

NOTE: 

Direction of the average velocity is same as that 

of r . 

 

t 0

x y

drv
v lim

dtt

ˆ ˆv v i v j

 →


= =



= +

    Fig 3.2 

where, vx = 
y

dydx
and v

dt dt
=

2 2

x yv vv = + ,  

where v  represents magnitude of velocity 

and 
y

x

v
tan

v
 =

or 
y1

x

v
tan

v

−  
 =  

 

NOTE: 

The instantaneous velocity at any point on the 

path of an object is tangential to the path at that 

point and its direction is in the direction of 

object’s motion. 

 

yx

avg

vvv ˆ ˆa i j
ttt


= = +



avg x y
ˆ ˆa a i a j= +

 

yx
dvdvdv ˆ ˆa i j

dt dt dt
= = +

x y
ˆ ˆa a i a j= +

Chapter  03

Motion  in  a  Plane & Relative Motion

1.  Motion in 2D (Plane)
1.1 Position  Vector  &  Displacement

1.3 Instantaneous  Velocity 2.  Projectile Motion
When a particle is projected obliquely from the earth’s 

surface, it moves simultaneously in horizontal and vertical

directions in a curved trajectory as depicted in the diagram

1.5 Instantaneous  Acceleration

1.4 Average  Acceleration

(By  vector addition)

from above figure we can see that

1.2 Average  Velocity
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below.  Motion of such a particle is called projectile 

motion. 

 

 
                                   

 

 

 
                                Fig 3.4 

 

 (i) V1x = V2x = V3x = V4x = ux = u cos  

which means that the velocity along x-axis remains constant  

[as there is no external force acting along that direction] 

 

(ii) a) Magnitude of velocity along y-axis first decreases 

and then it increases after the topmost point P. 

b) At topmost point magnitude of velocity is zero. 

c) Direction of velocity is in the upward direction while  

ascending and is in the downward direction while  

descending. 

d) Magnitude of velocity at A is same as magnitude of 

velocity at O; but the direction is changed 

e) Angle which the net velocity makes with the horizontal 

can be calculated by 

y

x

v velocity along y axis
tan

velocity along x axisv


 


 

& net velocity is always along the tangent. 

 

Horizontal Motion Vertical Motion 

x

x

x

u u cos

a 0

s u cos t x

x
t

u cos

 



  

 


 

y

y

2
y y y

u u sin

a g

1
s u t a t

2

 

 

 

 

 

So,  
2

2 2

x 1 x
y u sin g

u cos 2 u cos

  
 

   
 

2

2 2

gx
y x tan

2u cos
  


 

Which resembles to  2y bx ax   

 

(i) This is an equation of a parabola 

(ii) Because the coefficient of x2 is negative, it is an 

inverted parabola. 

 

 
Fig 3.5 

Path of the projectile is a parabola 
22u sin cos

R
g

 
  or  

22u R

sin cosg


 
 

Substituting this value in the above equation we have,   

x
y x tan 1

R

 
   

 
 

 

In this case a particle is projected at an angle  with an 

initial velocity u. For this particular case we will calculate 

the following: 

(a) time taken to reach A from O 

(b) horizontal distance covered (OA) 

(c) maximum height reached during the motion 

(d) velocity at any time ‘t’ during the motion 
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Fig 3.3

2.1 Analysis of Velocity in Case of a

  Projectile

2.2 Equation of Trajectory
Trajectory is the path traced by the body. To find the

trajectory we must find relation between y and x by 

eliminating time.

[Ref. to the earlier diag.]
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Horizontal axis Vertical axis 

ux = u cos  

ax = 0  

(In the absence of any 
external force ax is assumed 
to be zero) 

y

y

2
y y y

u u sin

a g

1
s u t a t

2

 

 

 

 

when the particle returns to 

same horizontal level, 

vertical displacement is 0 

and time taken is called time 

of flight, (T). 

2

y

1
0 u sin T gT

2

2u2u sin
T

gg

  




 

sx = ux t + 1/2ax t
2 

x – 0 = u cos t 

y2u
x ucos

g
   

22u cos sin
x

g

 
  

(2 cos sin = sin 2) 

2u sin2
x

g


  

horizontal distance covered is 
known as Range 

vy = uy + ay t 

It depends on time ‘t’. 

Its magnitude first decreases 
and then becomes zero and 
then increases. 

 vx = ux + ax t 

xv ucos   

It is independent of t and is 
constant 

Maximum height attained 

by the particle Method 1: 

using time of ascent 

Time of ascent, t = 
u sin

g



 

2
y y

2 2

2

2 2

1
s u t at

2

usin
usin

g

1 u sin
g

2 g

u sin
H

2g

 


 







 

Time of ascent (t1) =Time 

of descent (t2) 

At topmost point y = 0 

0 u sin gt    

Maximum height attained 

Method 2: using third 

equation of motion  
2 2
y y y y

2 2

v u 2a s

u sin
H

2g

 




 

1

2 1

1 2

u sin
t

g

u sin
t T t

g

T u sin
t t

2 g





  


  

 

 

 

Maximum Range  
2u sin 2

R
g


  and 

2

max

u
R

g
  

Range is maximum when sin 2 is maximum  

Maximum value of sin 2 = 1. 

So, 45   (for maximum range) 

 

 

 
                                 Fig 3.6 

The path traced by projectile is called its trajectory. 
After time t, 

Horizontal displacement x = ut 

Vertical displacement 21
y gt

2
   

(Negative sign indicates that the direction of vertical 
displacement is downward.) 

So  
2

2

1 x x
y g t

2 uu

 
  

 
  this is equation of a parabola 

Above equation is called trajectory equation. 

MOTION IN A PLANE & RELATIVE MOTION

3. Projectile Motion from a

Height

3.1 Horizontal Direction:
(i)  Initial velocity ux  = u

(ii) Acceleration ax  = 0

Vertical Direction:
(i)  Initial velocity uy  = 0

(ii) Acceleration ay  = -g (downward)
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The equations for this type of motion will be: 

● Time of flight

         f

2h
T

g
=

● Horizontal Range

        x

2h
R u t u

g
= =

● Trajectory Equation

2

2

1 x x
y g t

u2 u

 
= = 



This is equation of parabola 

● Along vertical direction

( )( )2 2

y 1

y 1

v 0 2 h g

v 2gh

= +

=

Along horizontal direction: 

x xv u u= =

So, velocity 

22 2

x y 1u 2ghv vv ++ ==

 

    

Fig 3.7 

( )

( )

x

x

x

2

y

y

y

uu

g sina

v u g sin t

1
x ut g sin t

2

0u

g cosa

0v

0y

=

= −

= − 

= −

=

= − 

=

=

 Fig 3.8 

Projectile up an inclined plane 

Motion along x-axis Motion along y-axis 

x

x

x

2

u u cos

a gsin

v u cos gsin t

1
x u cos t gsin t

2

= 

= − 

= − 

=  − 

y

y

y

2

u u sin

a g cos

v u sin g cos t

1
y u sin t g cos t

2

= 

= − 

= − 

=  − 

 

 

 

Fig 3.9 

xu u=

xa gsin= + 

( )v u gsin t= + 

( ) 21
tutx g sin

2
= + 

yu 0=

ya gcos= − 

yv 0=

y 0=

MOTION IN A PLANE & RELATIVE MOTION

4.  Projectile on an  Incline

4.1 The  Motion of a  Particle along the

  Inclined  Plane  in  Upward  Direction.

4.2 The  Motion of a  Particle along the

  Inclined  Plane  in  Downward

  Direction.
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Fig 3.10 

Projectile down an inclined plane 

Motion along x-axis Motion along y-axis 

x

x

x

2

u u cos

a gsin

v u cos gsin t

1
x u cos t gsin t

2

= 

= 

= + 

=  + 

y

y

y

2

u u sin

a g cos

v u sin g cos t

1
y u sin t g cos t

2

= 

= 

= − 

=  − 

( ) 
2

2

u
sinsin 2R

g cos
= − − 



The maximum range therefore is, 

( )
2

max 2

u
R 1 sin

g cos
 = − 



  

Fig 3.11 

• Case I: If you are stationary and you observe a car

moving on a straight road then you say velocity of car

is 20 m/s which means velocity of car relative to you is

20 m/s or, velocity of car relative to the ground is 20

m/s.

(As you are stationary on the ground.)

• Case II: If you go inside a car and observe you will

find that the car is at rest while the road is moving

backwards. You will say: Velocity of car relative to the

you is 0 m/s Mathematically, velocity of B relative to

A is represented as

BA B Av =v -v

  

 

 

 

 

• In river–boat problems we come across the following

three terms:

rv =  absolute velocity of river.

brv =  velocity of boatman with respect to river and

bv =  absolute velocity of boatman.

Hence, it is important to note that brv is the velocity of

boatman with which he steers and bv  is the actual 

velocity of boatman relative to ground. 

Further b br rv v v= + . 

• Now, let us derive some standard results and their

special cases.

A boatman starts from point A on one bank of a river

with velocity brv in the direction shown in figure. 

River is flowing along positive x–direction with 

velocity rv . Width of the river is d. 

Then, b r brv v v= +

Therefore, vbx = vrx + vbrx = vr – vbr sin  

MOTION IN A PLANE & RELATIVE MOTION

As this  being a vector quantity,  direction is very 

important.

5.1 Velocity of Approach / Separation
•  It is the component of relative velocity of one  particle

  with respect to another, along the line joining them.

•  If the separation is decreasing, we say it is velocity of

  approach and if separation is increasing, then we say it

  is velocity of separation.

•  In one dimension, since relative velocity is along the

  line joining A and B, hence velocity of approach

  /separation is  just  equal to magnitude of relative

  velocity of A with respect to B.

5.2 Velocity of  Approach /  Separation in

  Two  Dimensions
•  It is  the component of relative velocity of one particle

  with respect to another, along the line joining them.

•  If the separation is decreasing, we say it is velocity of

  approach and if separation is increasing, then we say it

  is velocity of separation.

6.  River-Boat Problems5.  Relative Motion
Relative is a very general term. In physics we use relative

very often.  For e.g.
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                        Fig 3.12 
Now, time taken by the boatman to cross the river is: 

by br br

ddd
or tt

v v cos v cos
 

 
...(i) 

Further, displacement along x–axis when he reaches on the 

other bank (also called drift) is given by- 

 r br

br

d
x v v sin

v cos
  


      ...(ii) 

 

 

 
 

 
  

 or,  r br

br

d
0v v sin

v cos
 


 

 r bror, v v sin   

 or, 1r r

brbr

v v
sin or sin

vv
  

     
 

 

 Hence, to reach point B the boatman should row at an 

angle 1 r

br

v
sin

v
 

   
 

  upstream from AB. 

 
2 2

b br r

dd
t

v v v
 


 

 Since sin1 So, if vr > vbr, the boatman can never 

reach at point B.  Because if vr = vbr, sin   = 1 or   = 

90° and it is just impossible to reach at B if   = 90°.  

Similarly, if vr > vbr, sin   > 1, i.e., no such angle exists. 

Practically it can be realized in this manner that it is not 

possible to reach at B if river velocity (vr) is too high. 

 

 

Consider a man walking west with velocity mv


, represented 

by OA


 . Let the rain be falling vertically downwards with 

velocity rv


, represented by OB


 as shown in figure. To find 

the relative velocity of rain with respect to man (i.e., rmv


), 

bring the man at rest by imposing a velocity mv


 on man 

and apply this velocity on rain also.  

Now the relative velocity of rain with respect to man will be 

the resultant velocity of  rv OB


 and  mv OC 


 , 

which will be represented by diagonal OD


 of rectangle 

OBDC. 

 2 2 2 2
rm r m r m r mv v v 2v v cos90 v v       

 

 
Fig 3.13 

If  is the angle which rmv


 makes with the vertical 

direction, then 

m

r

vOD
tan

OB v
    or 1 m

r

v
tan

v
  

  
 

 

Here, angle   is the angle that rmv


 makes w.r.t vertical. 

 In the above problem if the man wants to protect 

himself from the rain, he should hold his umbrella in 

the direction of relative velocity of rain with respect to 

man i.e., the umbrella should be held making an angle 

 (= tan–1 m

r

v

v
) west of vertical. 
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7. Relative Velocity of Rain

  with Respect to Man

6.1 Condition when the Boatman

  crosses the river in shortest interval

  of Time
From eq. (i) we can see that time (t) will be minimum

when    = 0° i.e., the boatman should steer his boat

perpendicular to the river current.

6.2 Condition when the Boatman wants

  to reach point B, i.e., at a point just

  opposite from where he started

  (shortest distance)
In this case, the drift (x) should be zero.

  x  = 0
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3. A vector A  multiplied by a real number λ is also a

vector, whose magnitude is λ times the magnitude of

the vector A  and whose direction is the same or

opposite depending upon whether λ is positive or

negative.

4. Two vectors A  and B  may be added graphically using

head to tail method or parallelogram method.

5. Vector addition is commutative: A B B A+ = +

It also obeys the associative law:

( ) ( )A B C A B C+ + = + +

6. A null or zero vector is a vector with zero magnitude.

Since the magnitude is zero, we don’t have to specify

its direction. It has the properties:

A 0 A+ =  

A0 0=  

0A 0=  

7. The subtraction of vector B  from A  is defined as the

sum of A  and B− :

( )A B A B− = + −

8. A vector A can be resolved into component along two

given vectors a and b lying in the same plane:

A a b=  +  where λ and µ are real numbers.

9. A unit vector associated with a vector A  has

magnitude one and is along the vector A :

A
n̂

A
=

The unit vectors ˆ ˆ ˆi, j and k are vectors of unit 

magnitude and point in the direction of the x-, y-, and z-

axes, respectively in a right-handed coordinate system. 

10. A vector A  can be expressed as 
x y
ˆ ˆA A i A j= +  where 

x yA ,A are its components along x-, and y-axes. If 

vector A makes an angle  with the x-axis, then

x yA A cos , A Asin=  =    and 

y2 2

x y

x

A
A A , tanAA

A
= = +  =

11. Vectors can be conveniently added using analytical

method. If sum of two vectors A  and B , that lie in x-y

plane, is R, then: 
x y
ˆ ˆR R i R j= + . where, x x xR A B= +

and  y y yR A B= +

12. The position vector of an object in x-y plane is given

by ˆ ˆr xi yj= +  and the displacement from position r to 

position r  is given by 

( ) ( )

r r r

ˆ ˆx x i y y j

ˆ ˆxi yj

 = −

 = − + −

=  + 

13. If an object undergoes a displacement r  in time t ,

its average velocity is given by  
r

v
t


=


. The velocity 

of an object at time t is the limiting value of the 

average velocity as  t tends to zero: 
t 0

drr
v lim

dtt →


= =


. 

It can be written in unit vector notation as: 

x y z
ˆ ˆ ˆv v i v i v k= + + where 

x y z

dzdydx
v , v , v

dtdtdt
= = =

When position of an object is plotted on a coordinate 

system, v  is always tangent to the curve representing 

the path of the object. 

14. If the velocity of an object changes from vto v' in time

t , then its average acceleration is given by:

v v ' v
a

t t

− 
= =

 

The acceleration a  at any time t is the limiting value 

of a as t 0 → , 

MOTION IN A PLANE & RELATIVE MOTION

NCERT CORNER
(Some important points to remember)

1. Scalar quantities are quantities with magnitudes only.

Examples are  distance, speed, mass and temperature

2. Vector quantities are quantities with magnitude and 

direction both. Examples are displacement, velocity 

and acceleration. They obey special rules of vector 

algebra.
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t 0

v dv
a lim

t dt →


= =



In component form, we have: 
zyx

ˆ ˆ ˆa a i a j a k= + +

Where,  
y zx

x y z

dvdv dv
, a, aa

dtdtdt
===

15. Relative motion can be defined as the comparison

between the motions of a single object to the motion of

another object moving with the same velocity. Relative

motion can be easily found out with the help of the

concept of relative velocity, relative acceleration or

relative speed

16. The relative velocity of an object A with respect to

object B is the rate of position of the object A with

respect of object B.

• If VA and VB be the velocities of objects A and B

with respect to the ground, then:

(a) The relative velocity of A with respect to B is

VAB = VA – VB

(b) The relative velocity of B with respect to A is

VBA = VA – VB

• SI unit: m/s

• Dimensional formula: [LT-1]

17. Relative Acceleration: The relative acceleration (also

ar) is the acceleration of an object or observer B in the

rest frame of another object or observer A.

• Acceleration of B relative to A = aB - aA

• SI unit: m/s2

• Dimensional formula: [LT-2]

18. Crossing of River problems:

• Time of crossing: Component (vr + vsr cos 𝜽) will

enable the person to drift along the length of river.

Hence drift Δx will be 

( )

( ( ))
sr

srr

d
... it

v sin

t ... iiv cosvx

 =


 = +  

•

min

sr

d
t

v
 = And hence 

Drift 
r

sr

d
x v

v

 
 =  

 

• Shortest Path: The person should try to swim such

that the resultant velocity becomes perpendicular to the

river flow.

2 2

sr r

d
t

v v
 =

−

19. Rain-man umbrella problems

• A person standing/running in a particular direction

would be needed to be protected by properly

directing the axis of the umbrella.

• Here again 3 situations may arise-

MOTION IN A PLANE & RELATIVE MOTION

Minimum time of crossing
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Case-I Case-II Case-III 

r m

r m

v sin v

v sin v

 



 −

r m

r

v sin v
tan

v cos

−
 =



r m

m r

v sin v

v v sin

 



− 

m

r

v vsin
tan

v cos

− 
 =



r m

r rm

v sin v

v cos v

 =



 =

In this case rain appears 

to fall vertically, which 

can happen only if the 

horizontal velocity of 

rain and man match. 
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Laws of Motion and Friction 

1. Force
(a) A force is something which changes or tends to

change the state of rest or motion of a body. It causes

a body to start moving if it is at rest or stop it, if it is

in motion or deflect it from its initial path of motion.

(b) Force is also defined as an interaction between two

bodies. Two bodies can also exert force on each

other even without being in physical contact, e.g.,

electric force between two charges, gravitational

force between any two bodies of the universe.

(c) Force is a vector quantity having SI unit Newton (N)

and dimension [MLT–2].

(d) Superposition of force: When many forces are

acting on a single body, the resultant force is

obtained by using the laws of vector addition.

1 2 ...
→ → → →

= + + nF F F F

Fig. 4.1 

The resultant of the two forces 1 2F and F
→ →

 acting at 

an angle θ is given by: 

2 2

1 2 1 22 cosF F F F F = + +

The resultant force is directed at an angle α with 

respect to force F1 where 2

1 2

sin
tan

cos

F

F F





=

+

(e) Lami’s theorem : If three forces F1, F2 and F3 are

acting simultaneously on a body and the body is in

equilibrium, then according to Lami’s theorem,

( ) ( ) ( )
31 2

sin sin sin
= =

− − −

FF F

     

 where α, β and γ are the angles opposite to the forces 

F1, F2 & F3 respectively. 

Fig. 4.2 

2. Types of Force
There are, basically, four forces, which are commonly 

encountered in mechanics.  

(a) Weight : Weight of an object is the force with which

earth attracts it. It is also called the force of gravity

or the gravitational force.

(b) Contact Force : When two bodies come in contact

they exert forces on each other that are called contact

forces.

(i) Normal Force (N): It is the component of contact

force normal to the surface. It measures how strongly

the surfaces in contact are pressed together.

(ii) Frictional Force (f) : It is the component of contact

force parallel to the surface. It opposes the relative

motion (or attempted motion) of the two surfaces in

contact.

Fig. 4.3 

(c) Tension: The force exerted by the ends of a taut

string, rope or chain is called the tension. The

direction of tension is so as to pull the body while

that of normal reaction is to push the body.

(d) Spring Force: Every spring resists any attempt to

change its length; the more you alter its length the

harder it resists. The force exerted by a spring is

given by F = –kx, where x is the change in length

and k is the stiffness constant or spring constant (unit

Nm–1).

3. Newton’s Laws of Motion
3.1  First law of Motion 

(a) Everybody continues in its state of rest or of uniform

motion in a straight line unless it is compelled by a

resultant force to change that state

(b) This law is also known as law of inertia. Inertia is

the property of inability of a body to change its

position of rest or uniform motion in a straight line

unless some external force acts on it.

 
 



LAWS OF MOTION AND FRICTION 

 (c)   Mass is a measure of inertia of a body.

(d) A frame of reference in which Newton’s first law is

valid is called inertial frame, i.e., if a frame of

reference is at rest or in uniform motion it is called

inertial, otherwise non-inertial.

3.2   Second Law of Motion 

(a) This law gives the magnitude of force.

(b) According to second law of motion, rate of change of

momentum of a body is directly proportional to the

resultant force acting on the body, i.e.,

dp
F

 
  
 dt

dp
F= K

dt

 Here, the change in momentum takes place in the 

direction of the applied resultant force. Momentum, 

p = mv  is a measure of sum of the motion contained 

in the body.  

(c) Unit force : It is defined as the force which changes

the momentum of a body by unity in unit time.

According to this, K=1

( )
dp d dv dm

F = = mv = m + v
dt dt dt dt

. 

If the mass of the system is finite and remains 

constant w.r.t. time, then (dm/dt) = 0 and  

2 1p -pdv
F= m = ma=

dt t

  
   
   

(d) External force acting on a body may accelerate it

either by changing the magnitude of velocity or

direction of velocity or both.

(i) If the force is parallel to the motion, it changes

only the magnitude of velocity but not the direction.

So, the path followed by the body is a straight line.

(ii) If the force is acting perpendicular to the motion

of body, it changes only the direction but not the

magnitude of velocity. So, the path followed by the

body is a circle (uniform circular motion).

(iii) If the force acts at an angle to the motion of a

body, it changes both the magnitude and direction of

v . In this case path followed by the body may be

elliptical, non-uniform circular, parabolic or

hyperbolic.

3.3  Third Law of Motion 
(a) According to this law, for every action there is an

equal and opposite reaction. When two bodies A and

B exert force on each other, the force by A on B (i.e.,

action represented by ABF ), is always equal and

opposite to the force by B on A (i.e., reaction 

represented BAF ). Thus, –AB BAF F= . 

(b) The two forces involved in any interaction between

two bodies are called action and reaction. But we

cannot say that a particular force is action and the

other one is reaction.

(c) Action and Reaction force always acts on different

bodies.

3.4  Some Important Points Concerning 

       Newton’s Laws of Motion 

(a) The forces of interaction between bodies composing

a system are called internal forces. The forces

exerted on bodies of a given system by bodies

situated outside are called external forces.

(b) Whenever one force acts on a body it gives rise to

another force called reaction i.e., a single isolated

force is physically impossible. This is why total

internal force in an isolated system is always zero.

(c) According to Newton’s second law,
dp

F= .
dt

 
 
 

 If F=0, =0
 
  
 

d p

dt
 or 0

dv

dt

 
=  

 

or 
→

v = constant or zero, 

i.e., a body remains at rest or moves with uniform

velocity unless acted upon by an external force. This

is Newton’s Ist law.

(d) Newton’s second law can also be expressed as:

2 1Ft p p= − . Hence, if a car and a truck are initially

moving with the same momentum, then by the

application of same breaking force, both will come to

rest in the same time.

(e) The second law is a vector law. it is equivalent to

three equations : Fx = max ; Fy = may ; Fz = maz. A

force can only change the component of velocity in

its direction. It has no effect on the component

perpendicular to it.

(f) F = ma is a local relation. The force at a point on

space at any instant is related to the acceleration at

that instant. Example: An object on an accelerated

balloon will have acceleration of balloon. The

moment it is dropped, it will have acceleration due to

gravity.

SCAN CODE 
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3.5  Applications of Newton’s Laws of 

       Motion 

There are two kinds of problems in classical mechanics : 

(a) To find unknown forces acting on a body, given the

body’s acceleration.

(b) To predict the future motion of a body, given the

body’s initial position and velocity and the forces

acting on it. For either kind of problem, we use

Newton’s second law . The following general

strategy is useful for solving such problems :

(i) Draw a simple, neat diagram of the system.

(ii) Isolate the object of interest whose motion is being

analyzed. Draw a free body diagram for this object,

that is, a diagram showing all external forces acting

on the object. For systems containing more than one

object, draw separate diagrams for each objects. Do

not include forces that the object exerts on its

surroundings.

(iii) Establish convenient coordinate axes for each body

and find the components of the forces along these

axes. Now, apply Newton’s second law, F ma= ,

in component form. Check your dimensions to make

sure that all terms have units of force.

(iv) Solve the component equations for the unknowns.

Remember that you must have as many independent

equations as you have unknowns in order to obtain a

complete solution.

(v) It is a good idea to check the predictions of your

solutions for extreme values of the variables. You

can often detect errors in your results by doing so.

4. Linear Momentum
The linear momentum of a body is defined as the product of 

the mass of the body and its velocity i.e. 

Linear momentum = mass × velocity  

If a body of mass m is moving with a velocity v , its linear 

momentum p  is given by 

=p m v

Linear momentum is a vector quantity. Its direction is the 

same as the direction of velocity of the body. 

The SI unit of linear momentum is kg ms–1 and the cgs unit 

of linear momentum is g cm s–1. Dimension : [MLT–1] 

5. Pseudo Force
It is a fictitious force observed only in non-inertial frames of 

reference. In a non-initial frame, it acts on a body in a 

direction opposite to the acceleration of the frame of 

reference. 

If observer O is non-inertial with acceleration 
0a and still

wants to apply Newton’s Second Law on particle P, then 

observer has to add a “Pseudo force” in addition to real 

forces on particle P. 

0= −Pseudo PF m a

Thus, Newton Second Law with respect to O will be 

Fig. 4.4 

Real ,Pseudo P P OF F m a+ =

i.e.,
Real ,P O P P OF m a m a− =

Where ,P Oa  is acceleration of P with respect to observer O. 

NOTE: 
If observer is in rotating frame, then Pseudo force is 

called “Centrifugal force”. 

Remember : Pseudo force is required only and only if 

observer is non-inertial. e.g. 

(i) Study of motion with respect to accelerating lift.

(ii) Study of motion with respect to accelerating wedge.

6. Apparent Weight in an
Accelerated Lift

(a) When the lift is at rest or moving with uniform

velocity, i.e., a = 0 :

mg– R = 0     or     R = mg               ∴     Wapp. = W0

Fig. 4.5 

(Where Wapp. = R = reaction of supporting surface or 

reading of a weighing machine and W0= mg = true 

weight.) 
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(b) When the lift moves upwards with an acceleration

a :

R – mg = ma or R = m(g + a) = mg 1
 
+ 

 

a

g

∴ Wapp.  =  W0 1
 
+ 

 

a

g

Fig. 4.6 

(c) When the lift moves downwards with an

acceleration a :

mg – R = ma or R = m (g–a) = mg 1
 
− 

 

a

g

∴ Wapp. =W0 1
 
− 

 

a

g

Fig. 4.7 

Here, if a > g, Wapp. will be negative. Negative 

apparent weight will mean that the body is pressed 

against the roof of the lift instead of floor. 

(d) When the lift falls freely, i.e., a = g :

R = m (g –g) = 0  ∴    Wapp. = 0

7. Problem of Monkey
Climbing a Rope

Let T be the tension in the rope. 

(i) When the monkey climbs up with uniform speed : T

= mg.

(ii) When the monkey moves up with an acceleration a :

T – mg = ma or T = m (g + a).

(iii) When the monkey moves down with an acceleration

a : mg – T = ma or T = m (g – a).

8. Problem of a Mass
Suspended from a Vertical
String

Following cases are possible: 

(a) If the carriage (say lift) is at rest or moving

uniformly (in translatory equilibrium), then T0 = mg.

(b) If the carriage is accelerated up with an acceleration

a, then

T = m(g + a) = mg 1
 
+ 

 

a

g
 = T0 1

 
+ 

 

a

g

Fig. 4.8 

(c) If the carriage is accelerated down with an

acceleration a, then

T = m(g – a) = mg 01 1
   
− = −   

   

a a
T

g g

Fig. 4.9 

(d) If the carriage begins to fall freely, then the tension

in the string becomes zero.

(e) If the carriage is accelerated horizontally, then

(i) mass m experiences a pseudo force ma opposite to

acceleration;

(ii) the mass m is in equilibrium inside the carriage and

T sin θ = ma, T cos θ = mg, i.e.,

 T = m 2 2+g a ;

Fig. 4.10
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9. Constraint Relation
Let us try to visualize this situation 

Fig. 4.11

(i) If m3 was stationary, then magnitude of

displacements of m1 and m2 would be same and in

opposite direction.

Let us say x (displacement of m1 and m2 when m3 is

stationary).

(ii) Now consider the case when m3 displaces by x1, then

net displacement of m1 = x1 – x 

m2 = x1 + x 

m3 = x1 

(iii) Differentiate it twice we have

3 1=ma a  

1 1= −ma a a

2 1= +ma a a

This problem can be approached in other way. Which 

is more mathematical and do not require much of 

visualisation. 

Steps involved to approach problems of multiple 

pulleys of system having different accelerations: 

(i) Define a fixed point/axis.

(ii) Locate positions of all movable points from fixed

point/axis.

(iii) (a) Write down the relation between length of the

string and the position of different movable points.

(b) No. of relation must be equal to no. of string.

(iv) Differentiate it twice to get the relationship between

acceleration of different objects.

Fig. 4.12

For string connecting m1 and m2 : 

Let the length of the string be l1 

Fig. 4.13

On differentiating it twice : 

0 = (a2 – a) + (a1 – a) + 0   1 2

2

+
=

a a
a

For string connecting m3 and pulley : 

Let the string length be l2

Fig. 4.14 

NOTE: 

If length is decreasing, then differentiation of that length 

(iii) the string does not remain vertical but inclines to the

vertical at an angle θ = tan–1 (a/g) opposite to

acceleration;

(iv) This arrangement is called accelerometer and can be

used to determine the acceleration of a moving

carriage from inside by noting the deviation of a

plumbline suspended from it from the vertical.

will be negative. 

∴ On differentiating twice, we have 

0 = a + (–a3) 

a = a3 

Now, we can apply F = ma for different blocks. 

Solve for a3, a1, a2 and Tension. 
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10. Friction
Friction is an opposing force that comes into play when 

one body actually moves (slides or rolls) or even tries to 

move over the surface of another body. 

Thus force of friction is the force that develops at the 

surfaces of contact of two bodies and impedes (opposes) 

their relative motion. 

(i) Frictional force is independent of the area of contact.

This is because with increase in area of contact, force

of adhesion also increases (in the same ratio). And

the adhesive pressure responsible for friction,

remains the same.

(ii) When the surfaces in contact are extra smooth,

distance between the molecules of the surfaces in

contact decreases, increasing the adhesive force

between them. Therefore, the adhesive pressure

increases, and so does the force of friction.

10.1 Static Friction, Limiting Friction 

and Kinetic Friction 

The opposing force that comes into play when one body 

tends to move over the surface of another, but the actual 

relative motion has yet not started is called Static friction. 

Limiting friction is the maximum opposing force that comes 

into play, when one body is just at the verge of moving over 

the surface of the other body. 

Kinetic friction or dynamic friction is the opposing force 

that comes into play when one body is actually moving over 

the surface of another body. 

NOTE: 

Kinetic friction is always slightly less than the limiting 

friction. 

Wx - applied force 

f - friction force 

Fig. 4.15 

10.2  Laws of Limiting Friction

(a) Static Friction

(i) The force of friction always acts in a direction

opposite to the direction of relative motion, i.e.,

friction is of perverse nature.

(ii) The maximum force of static friction, fms (called

limiting friction) is directly proportional to the

normal reaction (R) between the two surfaces in

contact. i.e.,

msf N   ...(1)

(iii) The force of limiting friction depends upon the

nature and the state of polish of the two surfaces in

contact and it acts tangential to the interface between

the two surfaces.

(iv) The force of limiting friction is independent of the

extent of the area of the surfaces in contact as long as

the normal reaction remains the same.

10.3 Coefficient of Static Friction 

We know that, 
ms ms sf N or f N = 

or ms

s

f

N
=  ...(2) 

Here, μs is a constant of proportionality and is called the 

coefficient of static friction. Thus : Coefficient of static 

friction for any pair of surfaces in contact is equal to the 

ratio of the limiting friction and the  normal reaction. μs, 

being a pure ratio, has got no units and its value depends 

upon the nature of the surfaces in contact. Further, μs, is 

usually less than unity and is never equal to zero. 

Since the force of static friction (fs) can have any value from 

zero to maximum (fms), i.e. fs < fms, eqn. (2) is generalised to 

fs < μsN  ...(3) 

10.4 Kinetic Friction 

The laws of kinetic friction are exactly the same as those for 

static friction. Accordingly, the force of kinetic friction is 

also directly proportional to the normal reaction, i.e., 

k k kf N or f N =  ...(4) 

μk is coefficient of kinetic friction.  μk < μs. 

10.5 Rolling Friction 

The opposing force that comes into play when a body 

rolls over the surface of another body is called the rolling 

friction. 

Cause of rolling friction: Let us consider a wheel which is 

rolling along a road. As the wheel rolls along the road, it 

slightly presses into the surface of the road and is itself 

slightly compressed as shown in Fig. 
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Fig. 4.16 

Thus, a rolling wheel: 

(i) constantly climbs a ‘hill’ (BC) in front of it, and

(ii) has to simultaneously get itself detached from the

road (AB) behind it. The force of adhesion between

the wheel and the road opposes this process.

Both these processes are responsible for rolling

friction.

10.6 Angle of Friction 

The angle of friction between any two surfaces in contact 

is defined as the angle which the resultant of the force of 

limiting friction F and normal reaction R makes with the 

direction of normal reaction R. 

It is represented by θ. 

In fig. OA represents the normal reaction R which balances 

the weight mg of the body. OB represent F, the limiting 

force of sliding friction, when the body tends to move to the 

right. Complete the parallelogram OACB. Join OC. This 

represents the resultant of R and F. By definition, AOC = 

θ is the angle of friction between the two bodies in contact. 

Fig. 4.17 

The value of angle of friction depends on the nature of 

materials of the surfaces in contact and the nature of the 

surfaces. 

Relation between μ and θ 

In Δ AOC, tan = = = =
AC OB F

OA OA R
  ...(5) 

Hence tan=   ...(6) 

i.e. coefficient of limiting friction between any two surfaces

in contact is equal to tangent of the angle of friction between

them.

10.7 Angle of Repose or Angle of Sliding 

Angle of repose or angle of sliding is defined as the 

minimum angle of inclination of a plane with the 

horizontal, such that a body placed on the plane just 

begins to slide down. 

It is represented by α. Its value depends on material and 

nature of the surfaces in contact. 

In fig., AB is an inclined plane such that a body placed on it 

just begins to slide down. ∠BAC (α) = angle of repose. 

Fig. 4.18 

The various forces involved are : 

(i) weight, mg of the body, acting vertically downwards,

(ii) normal reaction, R, acting perpendicular to AB,

(iii) Force of friction F, acting up the plane AB.

Now, mg can be resolved into two rectangular components 

: mg cos α opposite to R and mg sin α opposite to F. In 

equilibrium, 

F = mg sin α  ... (7) 

R = mg cos α  ... (8) 

Dividing (7) by (8), we get 

R mg

F mg sin 
, .i e.,= = tan 

cos 

Hence coefficient of limiting friction between any two 

surfaces in contact is equal to the tangent of the angle of 

repose between them. 

NOTE: 

Combining (6) and (9), we obtain 

μ = tan θ = tan α 

 = 

i.e. angle of friction is equal to angle of repose.

10.8 Method of Changing Friction 

Some of the ways of reducing friction are: 

(i) By polishing.

(ii) By lubrication.

(iii) By proper selection of materials.

(iv) By Streamlining.

(v) By using ball bearings.
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Some Important Cases

Case Diagram Result 

(a) When two bodies are kept in contact and force is

applied on the body of mass m1.

(i) 
1 2

=
+

F
a

m m

(ii) 2

1 2

=
+

m F
N

m m

(b) When two bodies are kept in contact and force is

applied on the body of mass m2.
(i) 

1 2

=
+

F
a

m m

(ii) 1

1 2

 =
+

m F
N

m m

(c) When two bodies are connected by a string and

placed on a smooth horizontal surface. (i) 
1 2

=
+

F
a

m m

(ii) 1

1 2

=
+

m F
T

m m

(d) When three bodies are connected through strings as

shown in fig and placed on a smooth horizontal surface. (i) 
( )1 2 3

=
+ +

F
a

m m m

(ii) 1

1

1 2 3( )
=

+ +

m F
T

m m m

(iii) 
( )

( )
1 2

2

1 2 3

+
=

+ +

m m F
T

m m m
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(e) When two bodies of masses m1 & m2 are attached at

the ends of a string passing over a pulley as shown in

the figure

(i) 
( )

( )
1 2

1 2

−
=

+

m m g
a

m m

(ii) 
1 2

1 2

2 
=  

+ 

m m
T g

m m
 

(f) When two bodies of masses m1 & m2  are attached

at the ends of a string passing over a pulley in such a

way that mass m1 rests on a smooth horizontal table and

mass m2 is hanging vertically.

(i) ( )
2

1 2

=
+

m g
a

m m
, 

(ii) ( )
1 2

1 2

=
+

m m g
T

m m

(g) If in the above case, mass m1 is placed on a smooth

inclined plane making an angle  with horizontal as

shown in

(i) 
( )2 1

1 2

sin−
=

+

m m g
a

m m



(ii) 
( )

( )
1 2

1 2

1 sin+
=

+

m m g
T

m m



(iii) If the system remains in

equilibrium, then m1g sin   = m2g

(h) If masses m1 and m2 are placed on inclined planes

making angles α & β with the horizontal respectively,

then

(i) 
( )

( )
1 2

1 2

sin sin−
=

+

g m m
a

m m

 

(ii) ( )
( )1 2

1 2

sin sin= +
+

m m
T g

m m
 

(i) When a body is moving on smooth inclined plane.
a = g sin , N  = mg cos  

(j) When a body is moving down on a rough inclined

plane.
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NCERT CORNER
(Some important points to remember) 

1. Aristotle’s view that a force is necessary to keep a

body in uniform motion is wrong. A force is

necessary in practice to counter the opposing force of

friction.

2. Newton’s first law of motion: “Everybody continues

to be in its state of rest or of uniform motion in a

straight line, unless compelled by some external

force to act otherwise”. In simple terms, the First

Law is “If external force on a body is zero, its

acceleration is zero”.

3. Momentum (p) of a body is the product of its mass

(m) and velocity (v): p = mv

4. Newton’s second law of motion: The rate of change

of momentum of a body is proportional to the

applied force and takes place in the direction in

which the force acts. Thus

dp
F k kma

dt
= =

where F is the net external force on the body and a its 

acceleration. We set the constant of proportionality k 

= 1 in SI units. Then 

dp
F ma

dt
= =

The SI unit of force is newton : 1 N = 1 kg m s-2 .  

(a) The second law is consistent with the First Law

(F = 0 implies a = 0)

(b) It is a vector equation

(c) It is applicable to a particle, and to a body or a

system of particles, provided F is the total external

force on the system and a is the acceleration of the

system.

5. Impulse is the product of force and time which

equals change in momentum. The notion of impulse

is useful when a large force acts for a short time to

produce a measurable change in momentum. Since

the time of action of the force is very short, one can

assume that there is no appreciable change in the

position of the body during the action of the

impulsive force.

6. Newton’s third law of motion: To every action, there

is always an equal and opposite reaction In simple

terms, the law can be stated thus: Forces in nature

always occur between pairs of bodies. Force on a

body A by body B is equal and opposite to the force

on the body B by A. Action and reaction forces are

simultaneous forces. There is no cause-effect relation

between action and reaction. Any of the two mutual

forces can be called action and the other reaction.

Action and reaction act on different bodies and so

they cannot be cancelled out. The internal action and

reaction forces between different parts of a body do,

however, sum to zero.

7. Law of Conservation of Momentum The total

momentum of an isolated system of particles is

conserved. The law follows from the second and

third law of motion.

8. Frictional force opposes (impending or actual)

relative motion between two surfaces in contact. It is

the component of the contact force along the

common tangent to the surface in contact. Static

friction fs opposes impending relative motion; kinetic

friction fk opposes actual relative motion. They are

independent of the area of contact and satisfy the

following approximate laws:

( )S s Smax

k k

f f R

f R

 =

=

µs(co-efficient of static friction) and µk (co-efficient 

of kinetic friction) are constants characteristic of the 

pair of surfaces in contact. It is found experimentally 

that µk is less than µs. 
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(a) A force is something which changes or tends to

change the state of rest or motion of a body. It causes

a body to start moving if it is at rest or stop it, if it is

in motion or deflect it from its initial path of motion.

(b) Force is also defined as an interaction between two

bodies. Two bodies can also exert force on each

other even without being in physical contact, e.g.,

electric force between two charges, gravitational

force between any two bodies of the universe.

(c) Force is a vector quantity having SI unit Newton (N)

and dimension [MLT–2].

(d) Superposition of force: When many forces are

acting on a single body, the resultant force is

obtained by using the laws of vector addition.

1 2 ...
→ → → →

= + + nF F F F

Fig. 4.1 

The resultant of the two forces 1 2F and F
→ →

 acting at 

an angle θ is given by: 

2 2

1 2 1 22 cosF F F FF + +=

The resultant force is directed at an angle α with 

respect to force F1 where 2

1 2

sin
tan

cos

F

F F





=

+

(e) Lami’s theorem : If three forces F1, F2 and F3 are

acting simultaneously on a body and the body is in

equilibrium, then according to Lami’s theorem,

( ) ( ) ( )
321

sinsinsin
==

−−−

FFF

   

 where α, β and γ are the angles opposite to the forces 

F1, F2 & F3 respectively. 

Fig. 4.2 

Weight :(a)  Weight of an object is the force with which

earth attracts it. It is also called the force of gravity

or the gravitational force.

(b) Contact Force : When two bodies come in contact

they exert forces on each other that are called contact

forces.

Normal Force (N):(i) It is the component of contact

force normal to the surface. It measures how strongly

the surfaces in contact are pressed together.

(ii) Frictional Force (f) : It is the component of contact

force parallel to the surface. It opposes the relative

motion (or attempted motion) of the two surfaces in

contact.

Fig. 4.3 

Tension:(c)  The force exerted by the ends of a taut

string, rope or chain is called the tension. The

direction of tension is so as to pull the body while

that of normal reaction is to push the body.

(d) Spring Force: Every spring resists any attempt to

change its length; the more you alter its length the

harder it resists. The force exerted by a spring is

given by F = –kx, where x is the change in length

and k is the stiffness constant or spring constant (unit

Nm–1).

3. Newton’s Laws of Motion
3.1  First law of Motion 

(a) Everybody continues in its state of rest or of uniform

motion in a straight line unless it is compelled by a

resultant force to change that state

(b) This law is also known as law of inertia. Inertia is

the property of inability of a body to change its

position of rest or uniform motion in a straight line

unless some external force acts on it.
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Laws of Motion and Friction

2. Types of Force
There are, basically, four forces, which are commonly

encountered in mechanics.

1.  Force



LAWS OF MOTION AND FRICTION 

 (c)   Mass is a measure of inertia of a body.

(d) A frame of reference in which Newton’s first law is

valid is called inertial frame, i.e., if a frame of

reference is at rest or in uniform motion it is called

inertial, otherwise non-inertial.

3.2   Second Law of Motion 

(a) This law gives the magnitude of force.

(b) According to second law of motion, rate of change of

momentum of a body is directly proportional to the

resultant force acting on the body, i.e.,

dp
F

 
  
 dt

dp
F= K

dt

 Here, the change in momentum takes place in the 

direction of the applied resultant force. Momentum, 

p = mv  is a measure of sum of the motion contained 

in the body.  

(c) Unit force : It is defined as the force which changes

the momentum of a body by unity in unit time.

According to this, K=1

( )
dmdvddp

+ v= mv = mF =
dtdtdt dt

. 

If the mass of the system is finite and remains 

constant w.r.t. time, then (dm/dt) = 0 and  

2 1p -pdv
= ma=F= m

dt t

  
   
   

(d) External force acting on a body may accelerate it

either by changing the magnitude of velocity or

direction of velocity or both.

If the force is parallel to the motion(i) , it changes

only the magnitude of velocity but not the direction.

So, the path followed by the body is a straight line.

If the force is acting perpendicular to the motion(ii)

of body, it changes only the direction but not the

magnitude of velocity. So, the path followed by the

body is a circle (uniform circular motion).

If the force acts at an angle to the motion of a(iii)

body, it changes both the magnitude and direction of

v . In this case path followed by the body may be

orcircular, parabolicnon-uniformelliptical,

hyperbolic.

3.3  Third Law of Motion 
(a) According to this law, for every action there is an

equal and opposite reaction. When two bodies A and

B exert force on each other, the force by A on B (i.e.,

action represented by ABF ), is always equal and

opposite to the force by B on A (i.e., reaction 

represented BAF ). Thus, –AB BAF F= . 

(b) The two forces involved in any interaction between

two bodies are called action and reaction. But we

cannot say that a particular force is action and the

other one is reaction.

(c) Action and Reaction force always acts on different

bodies.

3.4  Some Important Points Concerning 

       Newton’s Laws of Motion 

(a) The forces of interaction between bodies composing

a system are called internal forces. The forces

exerted on bodies of a given system by bodies

situated outside are called external forces.

(b) Whenever one force acts on a body it gives rise to

another force called reaction i.e., a single isolated

force is physically impossible. This is why total

internal force in an isolated system is always zero.

(c) According to Newton’s second law,
dp

F= .
dt

 
 
 

 If F=0, =0
 
  
 

d p

dt
 or 0

dv

dt

 
=  

 

or 
→

v = constant or zero, 

i.e., a body remains at rest or moves with uniform

velocity unless acted upon by an external force. This

is Newton’s Ist law.

(d) Newton’s second law can also be expressed as:

2 1Ft p p= − . Hence, if a car and a truck are initially

moving with the same momentum, then by the

application of same breaking force, both will come to

rest in the same time.

(e) The second law is a vector law. it is equivalent to

three equations : Fx = max ; Fy = may ; Fz = maz. A

force can only change the component of velocity in

its direction. It has no effect on the component

perpendicular to it.

(f) F = ma is a local relation. The force at a point on

space at any instant is related to the acceleration at

that instant. Example: An object on an accelerated

balloon will have acceleration of balloon. The

moment it is dropped, it will have acceleration due to

gravity.
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3.5  Applications of Newton’s Laws of 

       Motion 

There are two kinds of problems in classical mechanics : 

(a) To find unknown forces acting on a body, given the

body’s acceleration.

(b) To predict the future motion of a body, given the

body’s initial position and velocity and the forces

acting on it. For either kind of problem, we use

Newton’s second law . The following general

strategy is useful for solving such problems :

(i) Draw a simple, neat diagram of the system.

(ii) Isolate the object of interest whose motion is being

analyzed. Draw a free body diagram for this object,

that is, a diagram showing all external forces acting

on the object. For systems containing more than one

object, draw separate diagrams for each objects. Do

not include forces that the object exerts on its

surroundings.

(iii) Establish convenient coordinate axes for each body

and find the components of the forces along these

axes. Now, apply Newton’s second law, F ma= ,

in component form. Check your dimensions to make

sure that all terms have units of force.

Solve the component equations(iv)  for the unknowns.

Remember that you must have as many independent

equations as you have unknowns in order to obtain a

complete solution.

(v) It is a good idea to check the predictions of your

solutions for extreme values of the variables. You

can often detect errors in your results by doing so.

4. Linear Momentum
The linear momentum of a body is defined as the product of 

the mass of the body and its velocity i.e. 

Linear momentum = mass × velocity  

If a body of mass m is moving with a velocity v , its linear 

momentum p  is given by 

=p m v

Linear momentum is a vector quantity. Its direction is the 

same as the direction of velocity of the body. 

The SI unit of linear momentum is kg ms–1 and the cgs unit 

of linear momentum is g cm s–1. Dimension : [MLT–1] 

5. Pseudo Force
It is a fictitious force observed only in non-inertial frames of 

reference. In a non-initial frame, it acts on a body in a 

direction opposite to the acceleration of the frame of 

reference. 

If observer O is non-inertial with acceleration 
0a and still

wants to apply Newton’s Second Law on particle P, then 

observer has to add a “Pseudo force” in addition to real 

forces on particle P. 

0= −Pseudo PF m a

Thus, Newton Second Law with respect to O will be 

Fig. 4.4 

Real ,Pseudo P P OF F m a+ =

i.e.,
Real ,P O P P OF m a m a− =

Where ,P Oa  is acceleration of P with respect to observer O. 

NOTE: 
If observer is in rotating frame, then Pseudo force is 

called “Centrifugal force”. 

Remember : Pseudo force is required only and only if 

observer is non-inertial. e.g. 

(i) Study of motion with respect to accelerating lift.

(ii) Study of motion with respect to accelerating wedge.

6. Apparent Weight in an
Accelerated Lift

When the lift is at rest or moving with uniform(a)

velocity, i.e., a = 0 :

mg– R = 0     or     R = mg               ∴     Wapp. = W0

Fig. 4.5 

(Where Wapp. = R = reaction of supporting surface or 

reading of a weighing machine and W0= mg = true 

weight.) 
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When the lift moves upwards with an acceleration(b)

a :

R – mg = ma or R = m(g + a) = mg 1
 
+ 

 

a

g

∴ Wapp.  =  W0 1
 
+ 

 

a

g

Fig. 4.6 

anwithdownwardsmoveslifttheWhen(c)

acceleration a :

mg – R = ma or R = m (g–a) = mg 1


− 
 

a

g

∴ Wapp. =W0 1


− 
 

a

g

Fig. 4.7 

Here, if a > g, Wapp. will be negative. Negative 

apparent weight will mean that the body is pressed 

against the roof of the lift instead of floor. 

When the lift falls freely, i.e., a = g :(d)

R = m (g –g) = 0  ∴    Wapp. = 0

7. Problem of Monkey
Climbing a Rope

Let T be the tension in the rope. 

When the monkey climbs up with uniform speed : T(i)

= mg.

(ii) When the monkey moves up with an acceleration a :

T – mg = ma or T = m (g + a).

(iii) When the monkey moves down with an acceleration

a : mg – T = ma or T = m (g – a).

8. Problem of a Mass
Suspended from a Vertical
String

Following cases are possible: 

If the carriage (say lift) is at rest or moving(a)

uniformly (in translatory equilibrium), then T0 = mg.

(b) If the carriage is accelerated up with an acceleration

a, then

T = m(g + a) = mg 1


+ 
 

a

g
 = T0 1


+ 

 

a

g

Fig. 4.8 

(c) If the carriage is accelerated down with an

acceleration a, then

T = m(g – a) = mg 01 1
   
− = −   

   

a a
T

g g

Fig. 4.9 

(d) If the carriage begins to fall freely, then the tension

in the string becomes zero.

(e) If the carriage is accelerated horizontally, then

(i) mass m experiences a pseudo force ma opposite to

acceleration;

(ii) the mass m is in equilibrium inside the carriage and

T sin θ = ma, T cos θ = mg, i.e.,

 T = m 2 2+g a ;

Fig. 4.10
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9. Constraint Relation
Let us try to visualize this situation 

Fig. 4.11

(i) If m3 was stationary, then magnitude of

displacements of m1 and m2 would be same and in

opposite direction.

Let us say x (displacement of m1 and m2 when m3 is

stationary).

(ii) Now consider the case when m3 displaces by x1, then

mnet displacement of 1 = x1 – x 

m2 = x1 + x 

m3 = x1 

(iii) Differentiate it twice we have

3 1=ma a  

1 1= −ma a a

2 1= +ma a a

This problem can be approached in other way. Which 

is more mathematical and do not require much of 

visualisation. 

Steps involved to approach problems of multiple 

pulleys of system having different accelerations: 

(i) Define a fixed point/axis.

(ii) Locate positions of all movable points from fixed

point/axis.

(iii) (a) Write down the relation between length of the

string and the position of different movable points.

(b) No. of relation must be equal to no. of string.

(iv) Differentiate it twice to get the relationship between

acceleration of different objects.

Fig. 4.12

For string connecting m1 and m2 : 

Let the length of the string be l1 

Fig. 4.13

On differentiating it twice : 

0 = (a2 – a) + (a1 – a) + 0   21

2

+
=

aa
a

For string connecting m3 and pulley : 

Let the string length be l2

Fig. 4.14 

NOTE: 

If length is decreasing, then differentiation of that length 

(iii) the string does not remain vertical but inclines to the

vertical at an angle θ = tan–1 (a/g) opposite to

acceleration;

(iv) This arrangement is called accelerometer and can be

used to determine the acceleration of a moving

carriage from inside by noting the deviation of a

plumbline suspended from it from the vertical.

will be negative. 

∴ On differentiating twice, we have 

0 = a + (–a3) 

a = a3 

Now, we can apply F = ma for different blocks. 

Solve for a3, a1, a2 and Tension. 
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10. Friction
Friction is an opposing force that comes into play when 

one body actually moves (slides or rolls) or even tries to 

move over the surface of another body. 

Thus force of friction is the force that develops at the 

surfaces of contact of two bodies and impedes (opposes) 

their relative motion. 

(i) Frictional force is independent of the area of contact.

This is because with increase in area of contact, force

of adhesion also increases (in the same ratio). And

friction,forresponsibleadhesive pressurethe

remains the same.

(ii) When the surfaces in contact are extra smooth,

distance between the molecules of the surfaces in

contact decreases, increasing the adhesive force

between them. Therefore, the adhesive pressure

increases, and so does the force of friction.

10.1 Static Friction, Limiting Friction 

and Kinetic Friction 

The opposing force that comes into play when one body 

tends to move over the surface of another, but the actual 

relative motion has yet not started is called Static friction. 

Limiting friction is the maximum opposing force that comes 

into play, when one body is just at the verge of moving over 

the surface of the other body. 

Kinetic friction or dynamic friction is the opposing force 

that comes into play when one body is actually moving over 

the surface of another body. 

NOTE: 

Kinetic friction is always slightly less than the limiting 

friction. 

Wx - applied force 

f - friction force 

Fig. 4.15 

10.2  Laws of Limiting Friction

(a) Static Friction

(i) The force of friction always acts in a direction

opposite to the direction of relative motion, i.e.,

friction is of perverse nature.

(ii) The maximum force of static friction, fms (called

limiting friction) is directly proportional to the

normal reaction (R) between the two surfaces in

contact. i.e.,

msf N   ...(1)

(iii) The force of limiting friction depends upon the

nature and the state of polish of the two surfaces in

contact and it acts tangential to the interface between

the two surfaces.

(iv) The force of limiting friction is independent of the

extent of the area of the surfaces in contact as long as

the normal reaction remains the same.

10.3 Coefficient of Static Friction 

We know that, 
ms ms sf N or f N = 

or ms

s

f

N
=  ...(2) 

Here, μs is a constant of proportionality and is called the 

coefficient of static friction. Thus : Coefficient of static 

friction for any pair of surfaces in contact is equal to the 

ratio of the limiting friction and the  normal reaction. μs, 

being a pure ratio, has got no units and its value depends 

upon the nature of the surfaces in contact. Further, μs, is 

usually less than unity and is never equal to zero. 

Since the force of static friction (fs) can have any value from 

zero to maximum (fms), i.e. fs < fms, eqn. (2) is generalised to 

fs < μsN  ...(3) 

10.4 Kinetic Friction 

The laws of kinetic friction are exactly the same as those for 

static friction. Accordingly, the force of kinetic friction is 

also directly proportional to the normal reaction, i.e., 

k k kf N or f N =  ...(4) 

μk is coefficient of kinetic friction.  μk < μs. 

10.5 Rolling Friction 

The opposing force that comes into play when a body 

rolls over the surface of another body is called the rolling 

friction. 

Cause of rolling friction: Let us consider a wheel which is 

rolling along a road. As the wheel rolls along the road, it 

slightly presses into the surface of the road and is itself 

slightly compressed as shown in Fig. 
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Fig. 4.16 

Thus, a rolling wheel: 

(i) constantly climbs a ‘hill’ (BC) in front of it, and

has to simultaneously get itself detached from the(ii)

road (AB) behind it. The force of adhesion between

the wheel and the road opposes this process.

Both these processes are responsible for rolling

friction.

10.6 Angle of Friction 

The angle of friction between any two surfaces in contact 

is defined as the angle which the resultant of the force of 

limiting friction F and normal reaction R makes with the 

direction of normal reaction R. 

It is represented by θ. 

In fig. OA represents the normal reaction R which balances 

the weight mg of the body. OB represent F, the limiting 

force of sliding friction, when the body tends to move to the 

right. Complete the parallelogram OACB. Join OC. This 

represents the resultant of R and F. By definition, AOC = 

θ is the angle of friction between the two bodies in contact. 

Fig. 4.17 

The value of angle of friction depends on the nature of 

materials of the surfaces in contact and the nature of the 

surfaces. 

Relation between μ and θ 

In Δ AOC, tan = = = =
FOBAC

ROAOA
  ...(5) 

Hence tan=   ...(6) 

i.e. coefficient of limiting friction between any two surfaces

in contact is equal to tangent of the angle of friction between

them.

10.7 Angle of Repose or Angle of Sliding 

Angle of repose or angle of sliding is defined as the 

minimum angle of inclination of a plane with the 

horizontal, such that a body placed on the plane just 

begins to slide down. 

It is represented by α. Its value depends on material and 

nature of the surfaces in contact. 

In fig., AB is an inclined plane such that a body placed on it 

just begins to slide down. ∠BAC (α) = angle of repose. 

Fig. 4.18 

The various forces involved are : 

weight, mg of the body, acting vertically downwards,(i)

normal reaction, R, acting perpendicular to AB,(ii)

Force of friction F, acting up the plane AB.(iii)

Now, mg can be resolved into two rectangular components 

: mg cos α opposite to R and mg sin α opposite to F. In 

equilibrium, 

F = mg sin α  ... (7) 

R = mg cos α  ... (8) 

Dividing (7) by (8), we get 

mgR

mgF sin 
, .i e., == tan 

cos 

Hence coefficient of limiting friction between any two 

surfaces in contact is equal to the tangent of the angle of 

repose between them. 

NOTE: 

Combining (6) and (9), we obtain 

μ = tan θ = tan α 

 = 

i.e. angle of friction is equal to angle of repose.

10.8 Method of Changing Friction 

Some of the ways of reducing friction are: 

By polis(i) hing.

By lubrication.(ii)

By proper selection of materials.(iii)

By Streamlining.(iv)

By using ball bearings.(v)
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Some Important Cases

Case Diagram Result 

(a) When two bodies are kept in contact and force is

applied on the body of mass m1.

(i) 
1 2

=
+

F
a

m m

(ii) 2

1 2

=
+

m F
N

m m

(b) When two bodies are kept in contact and force is

applied on the body of mass m2.
(i) 

1 2

=
+

F
a

m m

(ii) 1

1 2

 =
+

m F
N

m m

(c) When two bodies are connected by a string and

placed on a smooth horizontal surface. (i) 
1 2

=
+

F
a

m m

(ii) 1

1 2

=
+

m F
T

m m

(d) When three bodies are connected through strings as

shown in fig and placed on a smooth horizontal surface. (i) 
( )1 2 3

=
+ +

F
a

m m m

(ii) 1

1

1 2 3( )
=

+ +

m F
T

mmm

(iii) 
( )

( )
1 2

2

1 2 3

+
=

+ +

m m F
T

m m m
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(e) When two bodies of masses m1 & m2 are attached at

the ends of a string passing over a pulley as shown in

the figure

(i) 
( )

( )
1 2

1 2

−
=

+

m m g
a

m m

(ii) 
1 2

1 2

2 
= 

+ 

m m
gT

m m
 

(f) When two bodies of masses m1 & m2  are attached

at the ends of a string passing over a pulley in such a

way that mass m1 rests on a smooth horizontal table and

mass m2 is hanging vertically.

(i) ( )
2

1 2

=
+

m g
a

m m
, 

(ii) ( )
1 2

1 2

=
+

m m g
T

m m

(g) If in the above case, mass m1 is placed on a smooth

inclined plane making an angle  with horizontal as

shown in

(i) 
( )2 1

1 2

sin−
=

+

m m g
a

m m



(ii) 
( )

( )
1 2

1 2

1 sin+
=

+

m m g
T

m m



(iii) If the system remains in

equilibrium, then m1g sin   = m2g

(h) If masses m1 and m2 are placed on inclined planes

making angles α & β with the horizontal respectively,

then

(i) 
( )

( )
1 2

1 2

sin sin−
=

+

g m m
a

m m

 

(ii) ( )
( )1 2

1 2

sin sin+=
+

m m
gT

m m
 

(i) When a body is moving on smooth inclined plane.
a = g sin , N  = mg cos  

(j) When a body is moving down on a rough inclined

plane.
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NCERT CORNER
(Some important points to remember) 

1. Aristotle’s view that a force is necessary to keep a

body in uniform motion is wrong. A force is

necessary in practice to counter the opposing force of

friction.

2. Newton’s first law of motion: “Everybody continues

to be in its state of rest or of uniform motion in a

straight line, unless compelled by some external

force to act otherwise”. In simple terms, the First

Law is “If external force on a body is zero, its

acceleration is zero”.

3. Momentum (p) of a body is the product of its mass

(m) and velocity (v): p = mv

4. Newton’s second law of motion: The rate of change

of momentum of a body is proportional to the

applied force and takes place in the direction in

which the force acts. Thus

dp
F k kma

dt
= =

where F is the net external force on the body and a its 

acceleration. We set the constant of proportionality k 

= 1 in SI units. Then 

dp
F ma

dt
= =

The SI unit of force is newton : 1 N = 1 kg m s-2 .  

(a) The second law is consistent with the First Law

(F = 0 implies a = 0)

(b) It is a vector equation

(c) It is applicable to a particle, and to a body or a

system of particles, provided F is the total external

force on the system and a is the acceleration of the

system.

5. Impulse is the product of force and time which

equals change in momentum. The notion of impulse

is useful when a large force acts for a short time to

produce a measurable change in momentum. Since

the time of action of the force is very short, one can

assume that there is no appreciable change in the

position of the body during the action of the

impulsive force.

6. Newton’s third law of motion: To every action, there

is always an equal and opposite reaction In simple

terms, the law can be stated thus: Forces in nature

always occur between pairs of bodies. Force on a

body A by body B is equal and opposite to the force

on the body B by A. Action and reaction forces are

simultaneous forces. There is no cause-effect relation

between action and reaction. Any of the two mutual

forces can be called action and the other reaction.

Action and reaction act on different bodies and so

they cannot be cancelled out. The internal action and

reaction forces between different parts of a body do,

however, sum to zero.

7. Law of Conservation of Momentum The total

momentum of an isolated system of particles is

conserved. The law follows from the second and

third law of motion.

8. Frictional force opposes (impending or actual)

relative motion between two surfaces in contact. It is

the component of the contact force along the

common tangent to the surface in contact. Static

friction fs opposes impending relative motion; kinetic

friction fk opposes actual relative motion. They are

independent of the area of contact and satisfy the

following approximate laws:

( )S s Smax

k k

f f R

f R

 =

=

µs(co-efficient of static friction) and µk (co-efficient 

of kinetic friction) are constants characteristic of the 

pair of surfaces in contact. It is found experimentally 

that µk is less than µs. 
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MOTION IN STRAIGHT LINE  

1. Work
Introduction to Work: 

In Physics, work stands for ‘mechanical work’. 

Work is said to be done by a force when the body is 
displaced actually through some distance in the direction of 
the applied force. 

However, when there is no displacement in the direction of 
the applied force, no work is said to be done, i.e., work done 
is zero, when displacement of the body in the direction of 
the force is zero. 

Suppose a constant force F   acting on a body produces a 
displacement s   in the body along the positive x-direction, 
as shown in the figure 

Fig.5.1 

If   is the angle which force makes with the positive x–
direction of the displacement, then the component of in the 
direction of displacement is (F cos  ). As work done by the 
force is the product of component of force in the direction of 
the displacement and the magnitude of the displacement, 

( ) ( )s ... 1FcosW = 

If displacement is in the direction of force applied, 

0 =  . Then from (1), W = (F cos 0°) s = F s 

Equation (1) can be rewritten as ( )... 2W F.s=

Thus, work done by a force is the dot product of force and 
displacement. 
In terms of rectangular component, F   and s   may written as 

x y z
ˆ ˆ ˆF F i F j F k= + + and ˆ ˆ ˆs xi yj zk= + +

From (2), W F.s=

( ) ( )x y z
ˆ ˆ ˆ ˆ ˆ ˆW F i F j F k . xi yj zk= + + + +

x y z
W x F y F zF= + +

Obviously, work is a scalar quantity, i.e., it has magnitude 
only and no direction. However, work done by a force can 
be positive or negative or zero. 

Note:

Work done is positive, negative or zero depending upon the 
angle between force & displacement 

1.1.  Dimensions and Units of Work 
As work = force × distance 

( )1 1 2W M LT L−= 

W = (M1 L1 T–2) × L

1 2 2W M L T−=   

This is the dimensional formula of work. 

The units of work are of two types:  

1. Absolute units 2. Gravitational units

(a) Absolute unit

1. Joule. It is the absolute unit of work in SI.

Work done is said to be one joule, when a force of one newton 
actually moves a body through a distance of one metre in the 
direction of applied force. 

From 

W Fs cos= 

 

1 joule = 1 newton × 1 metre × cos 0° = 1 N–m 

2. Erg. It is the absolute unit of work in cgs system.

Work done is said to be one erg, when a force of one dyne 
actually moves a body through a distance of one cm in the 
direction of applied force. 

From 

W Fs cos= 

5 21erg 1dyne 1cm cos0 10 N 10 m 1− −=    =  

71erg 10 J−=

(b) Gravitational units

These are also called the practical units of work. 

1. Kilogram-metre (kg–m). It is the gravitational unit of
work in SI.
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Work done is said to be one kg–m, when a force of 1 kgf 
moves a body through a distance of 1 m in the direction of the 
applied force. 

From W Fcos=   

1 kg–m = 1kgf × 1 m × cos 0° = 9.8 N × 1 m = 9.8 joule, i.e., 
1kg m 9.8J− =

2. Gram-centimetre (g-cm). It is the gravitational unit of
work in cgs system.

Work done is said to be one g-cm, when a force of 1g f moves 
a body through a distance of 1 cm in the direction of the 
applied force. 

From W Fs cos= 

1 g-cm = 1 g f × 1 cm × cos 0° 

1 g-cm = 980 dyne × 1 cm × 1 

1g cm 980erg− =

 

(a) Positive work

As W = F.s Fscos=   

 when q is acute (< 90°), cos q is positive. Hence, work 
done is positive. 

For example: 

When a body falls freely under the action of gravity, 0 =  , 
cos cos0 1 =  = + . Therefore, work done by gravity on a 
body falling freely is positive. 

(b) Negative work

As W = F. s Fscos=   

\ When q is obtuse (> 90°), cos q is negative. Hence, work 
done is negative. 

For example: 

When a body is thrown up, its motion is opposed by gravity. 
The angle   between gravitational force and the 
displacement is 180°. As cos cos180 1 =  = −  therefore, 
work done by gravity on a body moving upwards is Note 
negative. 

Fig.5.2 

(c) Zero work

When force applied F   or the displacement s   or both are 
zero, work done W = F s cos q is zero. Again, when angle q 

F  s   cos    =  cos  90  =  0   
 

 

s  

 

  

xB

W  =    F(x).dx
xA

Fig.5.3 

W Area ABCDA=

 
 

Energy of a body is defined as the capacity or ability of 
the body to do the work 

Work done is equal to energy consumed. 

D

x
BAO

Work

(b)

F (x)

C
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1.2. Nature of Work Done

Although work done is a scalar quantity, its value may be
positive, negative or even zero, as described below:

between  and  is 90°,  . Therefore,
work done is zero.

For example:

When we push hard against a wall, the force we exert on the
wall does no work, because  = 0. However, in this process,
our muscles are contracting and relaxing alternately and 
internal energy is being used up. That is why we do get 
tired.

1.3.  Work  done by a Variable Force

If the force is variable then the work done is

Hence, work done by a variable force is numerically equal to
the area under the force curve and the displacement axis.
Note:
NOTE:



 

 

 

 

 

21K.E. of body m v
2

=

 

Let m = mass of a particle, v =  velocity of the particle. 

Linear momentum of the particle, p mv=  

and K.E. of the particle ( )2 2 21 1mv m v
2 2m

= =

2pK.E
2m

 =

This is an important relation. It shows that a particle cannot 
have K.E. without having linear momentum. The reverse is 
also true. 

Further, if p = constant, 1K.E
m



This is shown in figure (a) 

If K.E. = constant, 2p m  or 

This is shown in figure (b). 

If m = constant, 2p K.E or 

This is shown in figure (c) 
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2.  Kinetic Energy
Introduction to Kinetic Energy:

The kinetic energy of a body is the energy possessed by the
body by virtue of its motion.

For example:

(i)  A bullet fired from a gun can  pierce through a target on
  account of kinetic energy of the bullet.

(ii)  Windmills  work on the kinetic energy of air.

(iii)  For example, sailing ships use the kinetic energy of wind.

(iv)  Water  mills  work  on  the  kinetic  energy  of  water.  For
  example,  fast  flowing  stream  has  been  used  to  grind
  corn.

(iv)  A nail is driven into a wooden block on account of kinetic
  energy of the hammer striking the nail.

Formula for Kinetic Energy

2.1. Relation Between Kinetic Energy

  and  Linear Momentum

Fig.5.4

3.  Work Energy Theorem
According  to  this  principle,  work  done  by  net  force  in
displacing a body is equal to change in kinetic energy of  the
body.

Thus, when a force does some work on a body, the kinetic
energy  of  the  body  increases  by  the  same  amount.
Conversely, when an opposing (retarding) force is applied on
a body, its kinetic energy decreases. The decrease in kinetic
energy  of  the  body  is  equal  to  the  work  done  by  the  body
against the retarding force. Thus, according to work energy
principle, work and kinetic energy are equivalent quantities.

Proof:  To  prove  the  work-energy  theorem,  we  confine
ourselves to motion in one  dimension.

Suppose m = mass of a body, u = initial velocity of the body,

F = force applied on the body along it’s direction of motion,

a = acceleration produced in the body, v = final velocity of
the body after t second.

Small amount of work done by the applied force on the body,



 

( )dW F ds= when ds is the small distance moved by the body 

in the direction of the force applied. 

Now, dv
F ma m

dt


= = 

 

( )
dvdv

dW F ds m ds m
dt dt

ds
dV mvdv v

dt

  
= = =   

   

 
= = 

 

ds
v

dt

 
= 

 

Total work done by the applied force on the body in 

increasing its velocity from u to v is 
vv v 2

uu u

v
W mvdv m vdv m

2

 
= = =  

 
 

( )2 2 2 21 11
mumvum vW

2 22
−= − =

But 2

f

1
mv K

2
= = final K.E. of the body and 2

i

1
Kmu

2
= =

W  =  Kf  −  Ki  =   

  

 

 
 

 
 

 

 

3. Work done by or against a conservative force in moving a
body through any round trip (i.e., closed path, where final
position coincides with the initial position of the body) is
always zero.
Non-conservative Forces

A force is said to be non-conservative, if work done by or
against the force in moving a body from one position to
another, depends on the path followed between initial and
final position.
For example, frictional forces are non-conservative forces.

Potential Energy and the Associated Conservative Force: 

We know how to find potential energy associated with a 
conservative force. Now we learn how to obtain the 
conservative force if potential energy function is known. 
Consider work done dW by a conservative force in moving 
a particle through an infinitely small path length d s  as 
shown in the figures.  

Fig.5.5 

dU dW F.ds Fds cos= − = − = − 

From the above equation, the magnitude F of the 
conservative force can be expressed. 

dU dU
F

dscos dr
= − = −



If we assume an infinitely small displacement in the 
direction of the force, magnitude of the force is given by the 
following equation. 

dU
F

dr
= −

Here minus sign suggest that the force acts in the direction 
of decreasing potential energy. 
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initial K.E. of the body

change in K.E. of  body
i.e., Net work done on the body = increase in K.E. of body

4.  Potential Energy

4.1.  Conservative and Non-Conservative

Forces
Conservative force

A force is said to be conservative if work done by or against
the force in moving a body depends only on the initial and 
final positions of the body, and not on the  trajectory  of path
followed between the initial and the final positions.
This means, work done by or against a conservative force in
moving a body over any path between fixed initial and final
positions will be the same.
For example, gravitational force is a conservative force.
Properties of Conservative forces :

1.  Work done by or against a conservative force, in moving 
a body from one position to the other depends only on the 
initial position and final position of the body.
2.  Work done by or against a conservative force does not 
depend upon the  trajecrory  of the path followed by the body
in going from initial position to the final position.



 

Also, x y Z
UUUF ,F,F
zyx

−
= −==

  

 

 

 

 

CW  =  −  U

  CW  :  

 

 

 

 

 

 

Fig.5.6 

If we assume that height h is not too large and the value of g 
is practically constant over this height,  

gW mg cos180=  

  gW  =  −mgh

U  =  −  gW

U  =  mgh

UB  −  UA  =  mgh

UA  =  0,  UB  =  U  =  mgh

   

 

 

 

 

 

 

Restoring Force   stretch or compression 

F x, F kx − = −  

where k is a constant of the spring and is called spring 
constant. 

It is established that for a spring, 1k  ,

: Natural length of spring

i.e., smaller the length of the spring, greater will be the force
constant and vice-versa.

The negative sign in equation indicates that the restoring 
force is directed always towards the equilibrium position. 

Let the body be displaced further through an infinitesimally 
small distance dx, against the restoring force. 

Small amount of work done in increasing the length of the 
spring by dx is 

O

A
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Considering  

4.4.  Spring  Potential Energy

Potential energy of a spring is the energy associated with the
state of compression or expansion of an elastic spring.

To  calculate  it,  consider  an  elastic  spring  OA  of  negligible
mass. The end O of the spring is fixed to a rigid support and
a body of mass m is attached to the free end A. Let the spring
be oriented along x–axis and the body of mass m lies on a
perfectly frictionless horizontal table.

Fig.5.7

The  position  of  the  body  A,  when  spring  is  unstretched  is
chosen as the origin.

When the spring is compressed or elongated, it tends to regain
to its original length, on account of elasticity. The force trying
to bring the spring back to its original configuration is called
restoring force or spring force.

For  a  small  stretch  or  compression,  spring  obeys  Hooke’s
law.

4.2 Introduction to Potential Energy

The  potential  energy  of  a  body  is  defined  as  the  energy
possessed  by  the  body  by  virtue  of  its  position  or
configuration in some conservative field.

Thus,  potential  energy  is  the  energy  that  can  be  associated
with the configuration (or arrangement) of a system of objects
that exert forces on one another. Obviously, if configuration
of the system changes, then its potential energy changes.

Two important types of potential energy are :

1.  Gravitational potential energy

2.  Elastic potential energy.

Also  

Work done by conservative force

4.3.  Gravitational Potential Energy

Gravitational  potential  energy  of  a  body  is  the  energy
possessed  by  the  body  by  virtue  of  its  position  above  the
surface of the earth.

To calculate gravitational potential energy, suppose

m = mass of a body

g = acceleration due to gravity on the surface of earth.

h = height through which the body is raised, as shown in the
  figure.



dW = – F dx = kx dx 

Total work done in giving displacement x to the body can be 
obtained by integrating from x = 0 to x = x, i.e.,

x xx x 22
2

x 0 x 0

1xx 0W kxkk x dx k
2 2 2

==

= =

 
= = = − =   

   


This work done is stored in the spring at the point B in the 
form of P.E 


21P.E. at B W kx

2
= =

Fig.5.8 

The variation of potential energy with distance x is shown in 
figure 

 

The mechanical energy (E) of a body is the sum of kinetic 
energy (K) and potential energy (U) of the body 

i.e., E K U= +

Obviously, mechanical energy of a body is a scalar quantity 
measured in joule. 

We can show that the total mechanical energy of a system is 
conserved if the force, doing work on the system are 
conservative. 

This is called the principle of conservation of total 
mechanical energy. 

For simplicity, we assume the motion to be one dimensional 

only. Suppose a body undergoes a small displacement Dx 
under the action of a conservative force ( )F x . According to

work energy theorem, 

change in K.E. = work done 

( )K F x .x =

As the force is conservative, the potential energy function 
( )U x is defined as  

( ) ( )U F x .x or U F x .x− =  = −

Adding, we get ( )K F x .dx =  

( )K U, K U 0 = −  + =

which means ( )K U E constant+ = =

 

Fig.5.10 

As the body is at rest at A, therefore, 

At A : K. E. of the body = 0 

P.E. of the body = mgh where g is acceleration due to 
gravity at A. 

T.E. of the body K.E P.E 0 mgh= + = +

( )1E mgh .... 1=

Let the body be allowed to fall freely under gravity, when it 
strikes the ground at C with a velocity v. 

From 2 2v u 2as− =

2v 0 2gh− =

P.E.

AX' X
x

h

x

(h–x)
B

C

A

Ground

 WORK, ENERGY AND POWER

5.1 Illustration of the Law of

  Conservation of Mechanical Energy

To illustrate the law further, let us calculate kinetic energy 
K.E., potential energy P.E. and total  energy T.E. of a body 
falling freely under gravity.

Let m be the mass of the body held at A, at a height h above
the ground, figure.

Fig.5.9

5. Mechanical Energy and Its
  Conservation



( )2v 2gh ... 2=

At C : K.E. of the body 21 1mv m(2 gh) mgh
2 2

= = =

P.E. of the body = mgh = mg (0) = 0 

Total energy of the body = K.E. + P.E. 

( )2E mgh 0 mgh ... 3= + =

In the free fall, let the body cross any point B with a velocity 

1v , where AB = x 

From v2 – u2 = 2 as

( )2
1v 0 2(g)x .... 4− =

At B : K.E. of the body 21 1mv m(2gx) mgx
2 2

= = =

Height of the body at B above the ground = CB = (h – x) 

P.E. of the body at B = mg (h – x) 

Total energy of the body at B = K.E. + P.E. 

( )BE mgx mg h x mgx mgh mgx= + − = + −

( )BE mgh ... 5=

From (1), (3), (5) we find that 

A B CE E E mgh= = =  which proves conservation of 

mechanical energy 

6. Potential Energy and
Nature of Equilibrium

As we know duf
dr

= − So, Force = negative of slope of u 

versus r graph. 

The state of stable and unstable equilibrium is associated with 
a point location, where the potential energy function assumes 
a minimum and maximum value respectively, and the neutral 
equilibrium is associated with region of space, where the 
potential energy function assumes a constant value. 

For the sake of simplicity, consider a one dimensional 
potential energy function U of a central force F. Here r is the 
radial coordinate of a particle. The central force F 
experienced by the particle equals to the negative of the slope 
of the potential energy function. Variation in the force with r 
is also shown in the figure. 

At locations 1 2r r , r r= = , and in the region 3r r , where 
potential energy function assumes a minimum, a maximum, 
and a constant value respectively, the force becomes zero and 
the particle is in the state of equilibrium 

Fig.5.11 

Force is negative of the slope of the potential energy 

function  

6.1 Stable Equilibrium 
At 1r r= the potential energy function is a minima and the

force on either side acts towards the point 1r r= . If the 
particle is displaced on either side and released, the force tries 
to restore it at 1r r= . At this location the particle is in the state 
of stable equilibrium. The dip in the potential energy curve at 
the location of stable equilibrium is known as potential well. 
A particle when disturbed from the state of stable equilibrium 
starts oscillations about the location of stable equilibrium. At 
the locations of stable equilibrium we have 

2

2

U F UF(r) 0; and 0; and 0
r r r

  
= − =  

  

6.2 Unstable Equilibrium 

At 2r r= the potential energy function is a maxima, the force 

acts away from the point 2r r= . If the particle is displaced 

slightly on either side, it will not return to the location 2r r=

. At this location, the particle is in the state of unstable 
equilibrium. At the locations of unstable equilibrium we have 

2

2

U F UF(r) 0; therefore 0; and 0
r r r

  
= − =  

  
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6.3 Neutral Equilibrium 

In the region 3r r= , the potential energy function is constant 
and the force is zero everywhere. In this region, the particle 
is in the state of neutral equilibrium. At the locations of 
neutral equilibrium we have 

2

2

U F UF(r) 0 therefore 0 and 0
r r r

  
= − = = =

  

7. Power

Power of a person or machine is defined as the time rate at 
which work is done by it. 

i.e., Power = Rate of doing work = work done
time taken

Thus, power of a body measurement how fast it can do the 
work. 

Units of power 

The absolute unit of power in SI is watt, which is denoted by 
W. 

From P = W/t 

1 watt = 1 joule ,
1sec

i.e., 11W 1Js−=

Power of a body is said to be one watt, if it can do one joule 
of work in one second. 

1 h.p. 746 W=

NOTE:

Power is also described in terms of rate at which energy 
is consumed. 

dWP
dt

=

* Now, dW = F.ds,  where F  is the force applied and ds  is
the small displacement.

F.dsP
dt

=

F.d sP
dt

=

But ds v,
dt
=  the instantaneous velocity. 

P F.v=

Dimensions of power can be deduced as : 

1 2 2
1 2 3

1

W M L TP M L T
t T

−

−= = =   
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1. Work done is a scalar quantity. It can be positive or
negative unlike mass and kinetic energy which are
positive scalar quantities. The work done by the friction
or viscous force on a moving body is negative.

2. A force is conservative if (i) work done by it on an
object is path independent and depends only on the
initial and final position, or (ii) the work done by the
force is zero for an arbitrary closed path taken by the
object such that it returns to its initial position.

3. The gravitational potential energy of a particle of mass
m at a height x about the earth’s surface is U(x) = m g x
where the variation of g with height is ignored.

4. The elastic potential energy of a spring of force constant

k and extension x is 21U(x) kx
2

=

5. The potential energy of a body subjected to a
conservative force is always undetermined upto a
constant. For example, the point where the potential
energy is zero is a matter of choice. For the gravitational
potential energy mgh, the zero of the potential energy is
chosen to be the ground.  For the spring potential energy

kx2/2, the zero of the potential energy is the equilibrium
position of the oscillating mass.

6. For a conservative force in one dimension, we may
define a potential energy function U(x) such that

xf

i f
xi

dU(x)F(x)
dx

or U U F(x)dx

= −

− = 

7. For equilibrium dUF 0
dx

= − =

8. The work – energy theorem states that the change in
kinetic energy of a body is the work done by the net
force on the body.

Kf – Ki = Wnet

9. The work done by a force can be calculated sometimes
even if the exact nature of the force is not known. This is
calculated with the help of work energy theorem by
using change in kinetic energy

10. The WE theorem holds in all inertial frames. It can also
be applied in non  internal frames provided we include

the pseudo forces in the calculation of the net force 
acting on the body under consideration. 

11. Every force encountered in mechanics does not have an
associated potential energy. For example, work done by
friction over a closed path is not zero and no potential
energy can be associated with friction.

12. The principle of conservation of mechanical energy
states that the total mechanical energy of a body remains
constant if the only forces that act on the body are
conservative.
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Circular Motion

1. Characteristics of Circular
Motion

1.1 Circular motion 
It is the movement of particles along the circumference of 
the circle. 

2. Various Parameters in
Circular Motion

2.1 Radius Vector
The vector joining the centre of the circle and centre of the 
particle performing circular motion is called radius vector. 
It has constant magnitude and variable directions. 

2.2 Angular Displacement
Introduction: Angle subtended by position vectors of a 
particle moving along any arbitrary path w.r.t. some fixed 
point is called angular displacement. 

Fig. 6.1 
(a) Particle moving in an arbitrary path

Fig. 6.2 

(b) Particle moving in a straight line

Fig. 6.3 
(c) Particle moving in circular path

i) Angular displacement is a vector quantity.
ii) Its direction is perpendicular to the plane of

rotation and is given by right hand screw rule.
NOTE: 

Clockwise angular displacement is taken as negative and 
anticlockwise displacement as positive. 

arc linear displacementangle
radius radius

= =

iii) For circular motion ΔS = r × Δθ
iv) Its unit is radian (in M.K.S)

NOTE: 
Always change degree into radian, if it occurs in 
numerical problems. 

v) It is a dimensionless quantity, i.e. dimension is
[M0L0T0]

2.3 Angular Velocity
It is defined as the rate of change of angular displacement of 
a body or particle moving in a circular path.  
i) It is a vector quantity.
ii) Its direction is the same as that of angular displacement

i.e. perpendicular to the plane of rotation.

NOTE: 
If the particle is revolving in the clockwise, direction then 
the direction of angular velocity is perpendicular to the 
revolutionary plane downwards. Whereas in case of 
anticlockwise direction the direction will be upwards. 

iii) Its unit is Radian/sec.
iv) Its dimension is [M0L0T–1].

Fixed point 
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Types of Angular Velocity 

Average Angular Velocity 

av

Total angular displacement

Total time taken
 =

Instantaneous Angular Velocity 

The instantaneous angular velocity is defined as the angular 
velocity at some particular instant of time. 
• Instantaneous angular velocity

t 0

d
lim

t dt →

 
 = =



NOTE: 
Instantaneous angular velocity can also be called simply 
angular velocity. 

2.4 Relation Between Linear Velocity 

And Angular Velocity 

We have d d ds 1
v

dt ds dt r

 
 = =  = 

ds arc ds
d , angle and v linear velocity

dr radius dt

 
 = = = = 

 

In vector form, v r= 

NOTE: 
i) When a particle moves along a curved path, its linear

velocity at a point is along the tangent drawn at that
point.

ii) When a particle moves along a curved path, its
velocity has two components. One along the radius,
which increases or decreases the radius and another
one perpendicular to the radius, which makes the
particle revolve about the point of observation.

iii) vsin

t r

 
 = =



3. Angular Acceleration
• The rate of change of angular velocity is defined as

angular acceleration.
• If Δω be change in angular velocity  in time Δt, then

angular acceleration:

t 0

d
lim

t dt →

 
 = =



i) It is a vector quantity
ii) Its direction is that of change in angular velocity

iii) Unit : rad/sec2

iv) Dimension :  M0L0T–2

3.1 Relation Between Angular 

Acceleration And Linear 

Acceleration  
Linear acceleration = Rate of change of linear 
velocity 

( )
dv

a ... i
dt

 =

Angular acceleration = Rate of change of angular velocity 

( )
d

... ii
dt


  =

From (i) & (ii) 
( )

 
d ra dv d

r r is constant r
d d d

a r

 
= = =  =

   

 = 

In vector form, a r= 

4. Radial and Tangential
Acceleration

a) Radial Acceleration is the change in direction of linear
velocity and acts along the radius towards the centre of
circle. It is given by

2
2

r

v
r

r
 = = 

It is also called centripetal acceleration. 

b) Tangential acceleration is the change in magnitude of
linear velocity, that act along the tangent to the circular
path. It is given by:

r = 

5. Uniform & Non-Uniform
Circular Motion

• The uniform circular motion is that in which the
particle is moving at a constant speed on circular path.

• The non-uniform circular motion is that in which the
particles move with variable speed on its circular path.
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6. Kinematics of Circular
Motion

If,  
m = mass of body,  
r = radius of circular orbit,  
v = magnitude of velocity 
ac = centripetal acceleration, 
at = tangential acceleration  

In uniform circular motion : 

i) 1 2 3v v v= = = constant i.e., speed is constant 

Fig 6.4 
ii) As v  is constant, so tangential acceleration at = 0 

Fig. 6.5 

iii) Tangential, force  Ft = 0

Fig. 6.6 
iv) Total acceleration

2
2 2
c t c

va a a a
r

= + = = (towards the centre) 

NOTE: 
• Because Fc is always perpendicular to velocity or

displacement, hence the work done by this force will
always be zero.

• Circular motion in a horizontal plane is usually
uniform circular motion.

• There is an important difference between projectile
motion and circular motion:
In projectile motion, both the magnitude and the
direction of acceleration (g) remain constant, while
in circular motion the magnitude remains constant
but the direction continuously changes.
Hence, equations of motion are not applicable for
circular motion.

• Remember that equations of motion remain valid
only when both the magnitude & direction of
acceleration are constant.

6.1 Equations for Linear and Rotational Motion 

S.No Condition Linear Motion Rotational Motion 

i. 
With constant 

velocity 

a = 0, s = ut 
(i) Average velocity

vav = v u
2
+

α = 0 , θ = ωt 
(i) Average angular velocity

ωav = 1 2

2
 + 

ii. 
With constant 

acceleration 

(ii) Average acceleration

aav = v u
t
−

(ii) Average angular acceleration

aav = 2 1

t
 − 

(iii) s = vav t
v u t

2
+

=

(iii) θ = ωav. t

1 2 t
2

 + 
=

(iv) v = u + at (iv) 2 1 t =  + 

(v) s = ut + 21 at
2

(v) θ = ω1t + 21 t
2



(vi) s = vt – 21 at
2

(vi) θ = ω2t – 21 t
2


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a 

(vii) v2 = u2 + 2as (vii) 2 2
2 1 2 =  + 

(viii) displacement in nth sec

( )n
1S u 2n 1 a
2

= + −

(viii) Angular displacement in nth sec

( )n 1
1 2n 1
2

 =  + − 

iii. 
With variable 

acceleration 

(i) (i) d / dt= 

(ii) ds vdt=  (ii) d dt =  

(iii) dv dva v
dt ds

= = (iii) d d
dt d
 

 = = 


(iv) dv a dt=  (iv) d dt =  

(v) vdv a ds=  (v) d d  =   

7. Non-Uniform Circular
Motion

i) In non-uniform circular motion :
v constant, constant  

i.e. speed isnot constant

& angular velocity is not constant
ii) If at any instant,

v = magnitude of velocity of particle,
r = radius of circular path,
ω = angular velocity of particle,
then 

iii) Tangential acceleration:

t
dva
dt

=

iv) Tangential Force:
Ft = mat

v) Centripetal Force:
2

2
c

mvF m r
r

= = 

vi) Net Force on the particle

c tF F F= +

2 2
c tF F F = +

If θ is the angle made by [Note: angle between Fc and Ft 
is 90º] F with Fc, then 

t

c

F
tan

F
 =

1 t

c

F
tan

F
−  

  =  
 

Angle between F & Ft is (90º – θ) 

Fig. 6.7 

vii) Net acceleration towards the centre = centripetal
acceleration

2
2 c

c
Fva r

r m
 = =  =

viii) Net Acceleration 2 2 net
c t

F
a a a

m
= + =

The angle made by 'a' with ac, t t

c c

a F
tan

a F
 = =

Fig. 6.8 

where, dsv
dt

=  and s = arc (length) 
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NOTE: 
• In both uniform & non-uniform circular motion, Fc is

perpendicular to velocity ; so work done by
centripetal force will be zero in both the cases.

• In uniform circular motion, Ft = 0, as at = 0, so work
done will be zero by tangential force.

• But in non-uniform circular motion Ft ≠ 0, thus there
will be work done by tangential force in this case.

• Rate of work done by net force in non-uniform
circular motion = Rate of work done by tangential
force

t t
dW dxP F v F
dt dt

 = =  = 

8. Centripetal & Centrifugal
Force

8.1 Centripetal
i) A body or particle moving in a curved path always

moves effectively in a circle at any instant.
ii) The velocity of the particle changes moving on the

curved path, this change in velocity is brought by a
force, known as centripetal force and  the acceleration
produced in the body, is known as centripetal
acceleration.

iii) The direction of centripetal force or acceleration is
always towards the centre of the circular path.

8.2 Expression for Centripetal 

Acceleration

Fig. 6.9 
(a) Particle moving in circular path of radius r

Fig. 6.10 
(b) Vector diagram of velocities

The triangle OP1P2 and the velocity triangle are similar 

1 2

1

P P AB
P O AQ

 =

1 2
s AB v v v

r AQ


 =  = =  

vv s
r

  = 

v v s
t r t

 
 =

 

t 0 t 0

v v slim lim
t r t →  →

  
 =  

  

2
2

c
v va v r
r r

 = = = 

2
ca r= 

This is the magnitude of centripetal acceleration of particle 

i) It is a vector quantity. In vector form ca v= 

ii) The direction of ca would be the same as that of v . 
iii) Because the velocity vector at any point is tangential to

the circular path at that point, the acceleration vector
acts along the radius of the circle at that point and is
directed towards the centre. This is the reason that it is
called centripetal acceleration.

8.3 Expression for Centripetal Force

Fig. 6.11 
If v = velocity of particle, 

A 

Q 
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    r = radius of path  
Then necessary centripetal force 
Fc = mass × acceleration 

2

c
vF m
r

=

This is the expression for centripetal force 

i) It is a vector quantity
ii) In vector form

2

c
mvF

r
= −

2

c 2

mvF r
r

= −

2
cF m r= − 

( )cF m v= − 

Negative sign indicates direction only. 
( )cF m v= 

iii) For circular motion:
( )cF m v sin 90 mv=   = 

NOTE:

• Centripetal force is not a real force. It is only the
requirement for circular motion.

• It is not a new kind of force. Any of the forces found
in nature such as gravitational force, electric friction
force, tension in string, reaction force may act as
centripetal force.

8.4 Centrifugal Force
The natural tendency of a body is to move uniformly along a 
straight line. When we apply centripetal force on the body, it 
is forced to move along a circle. While moving actually 
along a circle, the body has a constant tendency to regain its 
natural straight line path. This tendency gives rise to a force 
called centrifugal force.  
Hence, Centrifugal force is a force that arises when a

body is moving actually along a circular path, by virtue 

of the tendency of the body to regain its natural straight 

line path. 

• Centrifugal forces can be regarded as the reaction of
centripetal force. As forces of action and reaction are
always equal and opposite, therefore, magnitude of
centrifugal force = m v2/r, which is same as that of
centripetal force.

• However, the direction of centrifugal force is opposite
to the direction of centripetal force i.e. centrifugal

force acts along the radius and away from the centre 

of the circle.

NOTE:

Both centripetal and centrifugal forces, being the forces 
of action and reaction, act always on different bodies. For 
example, when a piece of stone tied to one end of a string 
is rotated in a circle, centripetal force F1 is applied on the 
stone by the hand. In turn, the hand is pulled outwards by 
centrifugal force F2 acting on it, due to the tendency of 
the stone to regain its natural straight line path. The 
centripetal and centrifugal forces are shown in Fig. 

Fig. 6.12 

9. Applications of Circular
Motion

9.1 Hint to Solve Numerical Problem
• Write down the required centripetal force.
• Draw the free body diagram of each component of the

system.
• Resolve the forces acting on the rotating particle along

radius and perpendicular to radius.
• Calculate net radial force acting towards the centre of

the circular path.
• Make it equal to required centripetal force.
• For remaining components see according to the

question.

NOTE:

When a system of particles rotates about an axis, the 
angular velocity of all the particles will be the same, but 
their linear velocity will be different, because of different 
distances from the axis of rotation i.e. v = rω. 

9.2 Motion in Horizontal Circle : 

Conical Pendulum
This is the best example of uniform circular motion. A 
conical pendulum consists of a body attached to a string of 
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length , such that it can revolve in a horizontal circle with 
uniform speed. The string traces out a cone in space. 

i) The force acting on the bob are
(a) Tension F     (b) weight mg

Fig. 6.13 
ii) The horizontal component F sin θ of the tension F

provides the centripetal force and the vertical
component F cos θ balances the weight of bob

2mvFsin and Fcos mg
r

  =  =

From these equations 

( )
4

2 2

vF mg 1 ..... i
r g

= +

and ( )
2vtan .... ii

rg
 =

Also if h = height of conical pendulum 

( )
OP rtan .... iii
OS h

 = =

From (ii) & (iii) 
2

2
2

v g
hr

 = =

The time period of revolution 

As, 2T 
=



 
h cosT 2 2 where OS = 
g g


=  = 

9.3 Rounding a Level Curved Road
• When a vehicle goes round a curved road, it requires

some centripetal force. While rounding the curve, the
wheels of the vehicle have a tendency to leave the

curved path and regain the straight line path. Force of 
friction between the wheels and the road opposes this 
tendency of the wheels. This force (of friction) 
therefore, acts, towards the centre of the circular track 
and provides the necessary centripetal force. 

• Three forces are acting on the car, fig.

Fig. 6.14 
i) The weight of the car, mg, acting vertically downwards,
ii) Normal reaction R of the road on the car, acting

vertically upwards,
iii) Frictional Force F, along the surface of the road,

towards the centre of the turn.
• As there is no acceleration in the vertical direction,

R–mg=0  or   R=mg                          ...(1)
The centripetal force required for circular motion is
along the surface of the road, towards the centre of the
turn.
As, it is the static friction that provides the necessary
centripetal force. Clearly,

2mv F
r

  …(2) 

where v is the velocity of the car while turning and r is 
the radius of a circular track. 
As   F = μsR = μs mg, [using (1)] 
where μs is the coefficient of static friction between the 
tyres and the road. Therefore, from (2), 

2

s

s

mv mg
r

or v rg

 

 

max sv rg =       ….(3) 

Hence the maximum velocity with which a vehicle can 
go round a level curve, without skidding is 

sv rg= 

• The value depends on the radius r of the curve and on
the coefficient of static friction (μs) between the tyres
and the road. Clearly, v is independent of the mass of
the car.
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9.4 Banking of Roads
• The maximum permissible velocity with which a

vehicle can go around a level curved road without
skidding depends on μ, the coefficient of friction
between the tyres and the road. The value of μ
decreases when the road is smooth or tyres of the
vehicle are worn out or the road is wet. Thus, the force
of friction is not a reliable source for providing the
required centripetal force to the vehicle.

• A safer course of action would be to raise the outer
edge of the curved road above the inner edge. By doing
so, a component of normal reaction of the road shall be
spared to provide the centripetal force. The

phenomenon of raising the outer edge of the curved

road above the inner edge is called banking of roads.

• We can calculate the angle of banking θ, as detailed
below:
In Fig., OX is a horizontal line. OA is the level of
banked curved road whose outer edge has been raised.
∠XOA = θ = angle of banking.

Fig. 6.15 

Fig. 6.16 

Three forces are acting on the vehicle as shown in Fig. 
• Weight mg of the vehicle acting vertically downwards.
• Normal reaction R of the banked road acting upwards in

a direction perpendicular to OA.
• Force of friction F between the banked road and the

tyres, acting along AO.

R can be resolved into two rectangular components :- 
• R cos θ, along vertically upward direction.

• R sin θ, along the horizontal, towards the centre of the
curved road.

F can also be resolved into two rectangular components : 
• F cos θ, along the horizontal, towards the centre of

curved road.
• F sin θ, along vertically downward direction.

As there is no acceleration along the vertical direction, the 
net force along this direction must be zero. Therefore, 
Rcosθ =mg+ F sin θ          ...(1) 

If v is the velocity of the vehicle over the banked circular 
road of radius r, then centripetal force required = mv2/r. This 
is provided by the horizontal components of R and F as 
shown in Fig. 

( )
2mvR sin Fcos ... 2

r
  +  =

But F < μs R, where μs is coefficient of static friction 
between the banked road and the tyres.  

To obtain vmax, we put F = μs R in (1) and (2). 
Rcosθ = mg + μs Rsinθ  ...(3) 

and ( )
2

s
mvR sin R cos .... 4

r
 +   =

From (3), R (cos θ – μs sin θ) = mg 

( )
s

mgR .... 5
cos sin

=
 −  

From (4), ( )
2

s
mvR sin cos

r
 +   =

Using (5), 
( )

( )

2
s

s

mg sin cos mv
cos sin r

 +  
=

 − 

( )

( )

( )

( )
s s2

s s

rg sin cos rgcos tan
v

cos sin cos 1 tan
 +     + 

 = =
 −   −  

( )

( )
( )

1/2

s

s

rg tan
v .... 6

1 tan
  + 

=  
−    

This is the max. velocity of vehicle on a banked road. 

Special Case: 

If μs = 0, i.e., if banked road is perfectly smooth, then, 

( ) ( )
1/2

0v rg tan .... 7= 

This is the speed at which a banked road can be rounded 
even when there is no friction. Driving at this speed on a 
banked road will cause almost no wear and tear of the tyres. 
From (7), 2

0v rg tan= 
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( )2
0or tan v / rg .... 8 =

• If the speed of the vehicle is less than v0, frictional force
will be up the slope. Therefore, the vehicle can be
parked only if tan θ < μs.

• Roads are usually banked for the average speed of
vehicles passing over them. However, if the speed of a
vehicle is somewhat less or more than this, the self
adjusting static friction will operate between the tyres
and the road, and the vehicle will not skid.

• The speed limit at which the curve can be negotiated
safely is clearly indicated on the sign boards erected
along the curved roads.

NOTE: 
The curved railway tracks are also banked for the same 
reason. The level of outer rail is raised a little above the 
level of inner rail, while laying a curved railway track. 

9.5 Bending of a Cyclist
• When a cyclist takes a turn, he also requires some

centripetal force. If he keeps himself vertical while
turning, his weight is balanced by the normal reaction
of the ground.

• In that event, he has to depend upon force of friction
between the tyres and the road for obtaining the
necessary centripetal force. As the force of friction is
small and uncertain, dependence on it is not safe.

• To avoid dependence on force of friction for obtaining
centripetal force, the cyclist has to bend a little inwards
from his vertical position, while turning. By doing so, a
component of normal reaction in the horizontal
direction provides the necessary centripetal force. To
calculate the angle of bending with vertical,
Let,
m = mass of the cyclist,
v = velocity of the cyclist while turning,
r = radius of the circular path,
θ = angle of bending with vertical.

In Fig., we have shown weight of the cyclist (mg) acting 
vertically downwards at the centre of gravity C. R is force of 
reaction of the ground on the cyclist. It acts at an angle θ 
with the vertical. 

Fig. 6.17 
R can be resolved into two rectangular components: 
• R cos θ, along the vertical upward direction,
• R sin θ, along the horizontal, towards the centre of the

circular track.

In equilibrium, R cos θ balances the weight of the cyclist i.e. 
R cos θ = mg      ...(1) 
and R sin θ provides the necessary centripetal force (m v2/r) 

( )
2mvR sin .... 2

r
  =

Dividing (2) by (1), we get  
2R sin mv

R cos r mg


=


2vtan
rg

 =

Clearly, θ would depend on v and r. 

• For a safe turn, θ should be small, for which v should be
small and r should be large i.e. turning should be at a
slow speed and along a track of larger radius. This
means, a safe turn should neither be fast nor sharp.

10. Motion in Vertical Circle
Motion of a body suspended by string: This is the best 
example of non-uniform circular motion. 
When the body rises from the bottom to the height h, a part 
of its kinetic energy converts into potential energy  

Total mechanical energy remains conserved 
Total (P.E. + K.E.) at A = Total (P.E. + K.E.) at P 

2 21 10 mu mgh mv
2 2

 + = +

2v u 2gh = −

as h cos= −   

( )1 cos= − 
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( )2v u 2g 1 cos = − − 

Fig. 6.18 
[Where is length of the string] 

10.1 Tension at a Point P

i) At point P, required centripetal force 
2mv

=

a) Net force towards the centre :

T – mg cos θ, which provides required centripetal
force.

Fig. 6.19 

2mv
T mgcos −  =

2v
T m g cos

 
=  + 

 

( )2m
u g 2 3cos = − −  

b) Tangential force for the motion

Ft = mg sin θ
This force retards the motion

ii) Results:

Fig 6.20 

a) Tension at the lowest point A :
2

A

A

mv
T mg= +

Here 0 = 

2

A

mu
T mg= +

b) Tension at point B :
2

B

B

mv
T mg= −

( )
2

B

mu
T 5mg 180= −  = 

c) Tension at point C :
2

C

C

mv
T =

( )
2

C

mu
T 2mg Here 90= −  = 

Thus, we conclude that 
TA > TC > TB 
and also 
TA – TB = 6 mg 
TA – TC = 3 mg 
TC – TB = 3 mg 

iii) Cases:

a) If u 5g

In this case tension in the string will not be zero at
any of the points, which implies that the particle will
continue the circular motion.

b) If u 5g=

In this case the tension at the top most point (B)
will be zero, which implies that the particle will
just complete the circular motion.

c) Critical Velocity: The minimum velocity at which
the circular motion is possible.
The critical velocity at A 5g=

The critical velocity at B g=

The critical velocity at C 3g=

Also, TA = 6 mg, TB = 0, TC = 3 mg

d) If 2g u 5g 

In this case particles will not follow circular 
motion. Tension in string becomes zero somewhere 
between points C & B whereas velocity remains 
positive. Particle leaves circular path and follow 
parabolic trajectory 
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Fig. 6.21 

e) If u 2g=

In this case both velocity and tension in the string
becomes zero between A and C and the particle
will oscillate along a semi-circular path.

f) If u 2g

The velocity of the particle remains zero between A
and C but tension will not be zero and the particle
will oscillate about the point A.

11. Tips & Tricks

6. If r is the radius of curvature of the speed breaker, then
the maximum speed with which the vehicle can run on

it without leaving contact with the ground is ( )v gr=

7. While taking a turn on the level road sometimes
vehicles overturned due to centrifugal force.

8. If h is the height of centre of gravity above the road, a is
half the wheel base distance, then for road safety

2mv h mg a,
r

  

Minimum safe speed for no overturning is v gar / h=

. 

9. On a rotating platform, to avoid the skidding of an
object placed at a distance r from axis of rotation, the
maximum angular velocity of the platform,

( )g / h =  , where   is the coefficient of friction

between the object and the platform.
10. If an inclined plane ends into a circular loop of radius r,

then the height from which a body should slide from the
inclined plane in the order to complete the motion in a
circular track is h = 5r/2.

11. Minimum velocity that should be imparted to a

pendulum to complete the vertical circle is ( )5g

where  is the length of the pendulum.

(3g ) .

15. If the velocity of the stone at the highest point is X mg,
then the tension at the lowest point will be (X + 6)mg.

16. If a body of mass m is tied to a string of length  and is 
projected with a horizontal velocity u such that it does 
not complete the motion in the vertical circle, then 

(a) the height at which the velocity vanishes is
2uh

2g
=

(b) the height at which the tension vanishes is
2u gh
3g
+

= . 

17. The K.E. of a body moving in a horizontal circle is the
same throughout the path but the K.E. of the body
moving in a vertical circle is different at different
places.

1. Centripetal force does not increase the kinetic energy of 
the particle moving in a circular path, hence the work 
done by the force is zero.

2. Centrifuges are the apparatuses used to separate small 
and big particles from a liquid.

3. The physical quantities which remain constant for a 
particle moving in a circular path are speed, kinetic 
energy and angular momentum.

4. If a body is moving on a curved road with speed greater 
than the speed limit, the reaction at the inner wheel 
disappears and it will leave the ground first.

5. On unbanked curved roads the minimum radius of 
curvature of the curve for safe driving is r = v2/mg, 
where v is the speed of the vehicle and m is small.

12. While describing a vertical circle when the stone is in its 
      lowest position, the tension in the string is six times the 
      weight of the stone.
13. The total energy of the stone while revolving in a vertical 
      circle is (5/2) mgl .
14. When the stone is in horizontal position then the tension 
      in the string is 3mg and the velocity of the stone is
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1. Circular Motion

• It is the movement of particles along the circumference

of a circle.

• The uniform circular motion is that in which the

particle is moving at a constant speed on circular path.

• The non-uniform circular motion is that in which the

particles move with variable speed on its circular path.

2. Variables in Circular Motion

•

s / r = s

Angular Displacement: It is the angle subtended by

the position vector at the centre of the circular path.

Angular displacement,   where, is the arc

length and r is the radius

•

( )

/ t= 

Angular Velocity: The time rate of change of angular

displacement is called angular velocity.

Angular velocity, 

Angular velocity is a vector quantity

( )

Relation between linear velocity (v) and and angular 

velocity is given by

v r= 

• Angular Acceleration: The rate of change of angular

velocity is called angular acceleration.

Angular acceleration,

2 →t
lim

0 t dt dt

2 d d 
 = = = Its SI unit is rad/s2 and 

dimensional formula is [T-2] 

Acceleration in a circular motion has two components 

as given below: 

(a) Tangential acceleration is the change in magnitude

of linear velocity and act along tangent to the circular

path. It is given by:

T = r

(b) Radial Acceleration is the change in direction of

linear velocity and acts along the radius towards the

centre of circle. It is given by 
2

2

r

v
r

r
 = = 

It is also called centripetal acceleration. 

( )

Relation between linear acceleration (a) and angular 

acceleration  

, where r = radius a r= 

( )Relation between angular acceleration and

linear velocity (v) 
2v

r
 =

3. Centripetal and Centrifugal Force

• Centripetal force: In uniform circular motion the force

acting on the particle along the radius and towards the

centre keeps the body moving along the circular path.

This force is called centripetal force.

• Centrifugal force: The pseudo force experienced by a

particle performing uniform circular motion due to

accelerated frame of reference which is along the radius

and directed way from the centre is called centrifugal

force.

NOTE: 

• Pseudo force acts in non inertial frame i.e. accelerated

frame of reference in which Neutron’s law’s of motion

do not hold good.

• When a car moving along a horizontal curve takes a

turn, the person in the car experiences a push in the

outward direction.

• The coin placed slightly away from the centre of a

rotating gramophone disc slips towards the edge of the

disc.

• A cyclist moving fast along a curved road has to lean

inwards to keep his balance

4. Difference Between Centripetal Force and

Centrifugal Force

Centripetal Force Centrifugal Force 

• Centripetal force is

directed along the

radius. Towards the

centre of the circle.

• Centrifugal force is

directed along the

radius, away from the

centre of the circle.

• It is a real force. • It is a pseudo force.

• It arises in both

inertial and non-

inertial frame of

reference.

• It arises only in non-

inertial frame of

reference or in rotating

frame reference

• Eg. when a satellite is

revolving in circular

orbit around the earth,

the centripetal force is

due to gravitational

force of attraction.

• Eg. along a curved road

the passenger in the

vehicle has a feeling of

push in the outward

direction The push is

due to centrifugal force.

NCERT Corner 
Important Points to Remember
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5. Equations of Motions:

For constant angular acceleration-
(i) 0 t =  + 

(ii) 2
0

1t t
2

 =  + 

(iii) 2 2
0 2 =  + 

6. Motion of a car on a plane circular road-

For motion without skidding
2
max

g
Mv

M
r

= 

maxv rg 

7. Motion on a banked road

Angle of banking =   

htan
b

 =

Maximum safe speed at the bend

( )

( )

1/2

max

rg tan
v

1 tan
  + 

=  
−    

If friction is negligible 
2
max

max
vrhgv rg tan and tan

b rg
=  =  =

8. Motion of cyclist on a curve

In equilibrium angle with vertical is  , then
2vtan

rg
 =

Maximum safe speed maxv rg= = 

9. Motion in a vertical circle (particle tied to

string)

At the top position – Tension 
2
A

A
vT m g
r

 
= − 

 

For AT 0,= critical speed gr=

At the bottom – Tension
2
B

B
vT m g
r

 
= + 

 

For completing the circular motion minimum speed at 
the bottom Bv 5gr=

Tension BT 6mg=

10. Conical Pendulum (Motion in a horizontal

circle)

Tension in string 
( )

1/22 2

mg

r
=

−

Angular velocity g
cos

=


Periodic time 
cos r2 2
g g tan


=  = 


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Centre of Mass, Momentum & Collisions

1. Centre of Mass
In the first part of mechanics, we have discussed all about 
point objects. In this chapter, we shall deal with the cases of 
large objects or systems of point objects. To deal with such 
scenarios, we need to know about the centre of mass of an 
object or a system. 

1.1 Definition 
Centre of mass is a hypothetical point where the whole mass 
of the object is assumed to be concentrated mathematically. 
It is the weighted mean of the positions of all the point 
objects with masses M1, M2, M3, ......,Mn respectively 
Example : 

Fig. 7.1 
then 

1 1 2 2 n n
cm

1 2 n

M x M x .....M xX
M M .... M
+ +

=
+ +

Similarly : 

i i
cm

i

M r
r

M
=



i i i i
cm cm

i i

M x M y
X and Y

M M
 = =

 
 

1.2 Location of Centre of Mass 
(a) For 2 point objects

Fig 7.2 

2

1 2

M ca
M M

=
+

1

1 2

M cb
M M

=
+

COM will be towards the heavier mass. 

(b) For multiple systems of point objects

Fig 7.3 
Consider three systems, where total mass and position 
of COM mass of all the particles in system 1, is M1 
and (x1, y1) respectively in system 2 is M2 and (x2, y2) 
and in system 3 is M3 and (x3, y3) respectively. 
Then COM of all particles in all combined systems is 

1 1 2 2 3 3
cm

1 2 3

M x M x M x
X

M M M
+ +

=
+ +

 and 

1 1 2 2 3 3
cm

1 2 3

M y M y M y
Y

M M M
+ +

=
+ +

(c) For objects with continuous mass distributions:

COM of objects with continuous mass distribution can
be found with help of integration. Presently we shall
focus on the location of COM for some objects whose
mass is continuously distributed.

S.No Shapes COM 

1. 
Uniform Rod 

Lx
2

=
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2. 

Semicircular ring 

2Ry =


3. 

Semicircular disk 

4Ry
3

=


4. 

Hollow hemisphere 

Ry
2

=

5. 

Solid hemisphere 

3Ry
8

=

6. 

Solid right circular cone 

hy
4

=

7. 

Hollow right circular cone 

2hy
3

=

1.3 Motion of Centre of Mass 
We know 

1 1 2 2 3 3 n n
cm

1 2 n

M r M r M r ......M r
r

M M ......M
+ + +

=
+ +

Differentiating both sides with respect to time, 

1 1 2 2 n n
cm

1 2 n

M v M v ......M vV
M M .....M
+ +

=
+ +

Again, differentiating both sides w.r.t. time 

1 1 2 2 n n
cm

1 2 n

M a M a ....M aA
M M ....M
+ +

=
+ +

1.4 Properties and Application of COM 
(a) Entire mass is supposed to be concentrated at COM.
(b) If some force is applied on a free object, the body does

not rotate if line of action of force passes through
centre of mass.
We know

        1 1 2 2 n n
cm

1 2 n

M a M a ....M aA
M M ....M
+ +

=
+ +

cm 1 1 2 2 n nMA M a M a M a = + +

By Newton’s 2nd law. 

1 1 1M a F= and similarly for all objects, with terms 
having the obvious meanings. 

1 2 n cmF F ....F MA + + =

ext cmF MA =
The above relation is very useful in solving
complicated problems.

(c) We know

     1 1 2 2 n n
cm

1 2 n

M v M v ....M vV
M M ....M
+ +

=
+ +

cm 1 1 2 2 n nMv M v M v ....M v = + +

sys 1 2 nP P P .....P= + +

Total momentum of system of all particles is total 
mass times cmV .  
Above relation helps us in applying momentum related 
equations in complex problems. 

1.5 Example of Motion of COM and its 

Applications 
(a) Trajectory of COM remains unchanged on

disintegration of an unstable nucleus or a bomb till the
time extF  on the system does not change.

(b) Motion of binary stars.
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(c) Conservation of momentum during disintegration of an
unstable nucleus.

(d) Motion of earth-moon system about sun.

2. Linear Momentum
The total linear momentum of a system of particles is equal 
to the product of the total mass of the system and the 
velocity of its centre of mass cmP Mv= .

2.1 Linear Momentum Conservation in 

Presence of External Force

ext ext
dPF F dt dP
dt

=  =

( )ext impulsive
dP F dt =

( )ext impulsive
If F 0 =

dP 0 or Pisconstant =

NOTE: 
Momentum is conserved if the external force present is 
non-impulsive. Eg. Gravitation or spring force. 

When the vector sum of the external forces acting on a 
system is zero, the total linear momentum of the system 
remains constant. 

1 2 3 nP P P ....... P constant+ + + + =

3. Impulse
Impulse of a force F  acting on a body for the time interval 

1t t= to 2t t= is defined as :- 
2

1

2

1

t

t

v

v

I Fdt

dvI Fdt m dt mdv
dt

=

= = =



  

( )2 1I m v v P= − =  = change in momentum due to force F

. 
NOTE: 

Impulse applied to an object in a given time interval can 
also be calculated from the area under force time (F-t) 
graph in the same time interval. 

Fig. 7.4 

3.1 Instantaneous Impulse
There are many cases when a force acts for such a short time 
that the effect is instantaneous, e.g., a bat striking a ball. In 
such cases, although the magnitude of the force and the time 
for which it acts may each be unknow but the value of their 
product (i.e., impulse) can be known by measuring the 
initial and final momenta. Thus, we can write. 

f iI Fdt P P P= =  = −

3.1.1 Important Points 
• It is a vector quantity.
• Dimensions = [MLT-1]
• SI unit = kg m/s
• Direction is along change in momentum.
• Magnitude is equal to area under the F-t graph.
• avI Fdt F dt F t= = =  
• It is not a property of a particle, but it a measure of the

degree to which an external force changes the
momentum of the particle.

3.2 Average Force 
We can now define the average force which acts on a 
particle during a time interval t . It is: 

p IF
t t


= =
 

The value of the average force depends on the time chosen. 
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4. Collisions
We define a collision as an isolated event in which two or 
more colliding bodies exert relatively strong forces on each 
other for a relatively short time. 
Two key rules of the collision game are : 
(i) Law of conservation of linear momentum, and
(ii) Law of conservation of energy.

4.1 Types of Collision 
Collisions between particles have been divided broadly into 
two types : 

(a) Elastic collision : A collision in which there is
absolutely no loss of kinetic energy is called an elastic
collision. For example, collisions between atomic and
subatomic particles are elastic collisions. Practically a
collision between two ivory balls can also be taken as
an elastic collision.

The basic characteristics of an elastic collision are: 
(i) The linear momentum is conserved,
(ii) Total energy of the system is conserved,
(iii) The kinetic energy is conserved.
(iv) The forces involved during elastic collisions must
be conservative forces.

(b) Inelastic collision : A collision in which there occurs
some loss of kinetic energy is called an inelastic
collision. As there is always some loss of kinetic energy
in most of the collisions, therefore, collisions we come
across in daily life are generally inelastic.

The basic characteristics of an inelastic collision are : 
(i) The linear momentum is conserved
(ii) Total energy is conserved.
(iii) Kinetic energy is NOT conserved. Obviously, a
part of kinetic energy is converted into some other form
of energy e.g., heat energy, sound energy etc.
(iv) Some or all the forces involved in an inelastic
collision may be non-conservative in nature.

NOTE: 
A perfectly inelastic collision is one in which maximum 
amount of kinetic energy is lost. 

4.2 Coefficient of Restitution or 

Coefficient of Resilience 
Coefficient of restitution or coefficient of resilience of a 
collision is defined as the ratio of relative velocity of 
separation after collision to the relative velocity of approach 
before collision. It is represented by ‘e’. 

relative velocity of separation (after collision)e = 
relative velocity of approach (before collision)

2 1

1 2

v – ve
u – u

=

where u1, u2 are velocities of two bodies before collision, 
and v1, v2 are their respective velocities after collision. 

• For a perfectly elastic collision, relative velocity of
separation after collision is equal to relative velocity of
approach before collision.

e 1 =

• For a perfectly inelastic collision, relative velocity of
separation after collision = 0

e 0 =

• For all other collisions, e lies between 0 and 1, i.e.
0 < e < 1.

4.3 Elastic Collision in One Dimension 
It involves two bodies moving initially along the same 
straight line, striking against each other without loss of 
kinetic energy and continuing to move along the same 
straight line after collision. 
Suppose two balls A and B of masses m1 and m2 are moving 
initially along the same straight line with velocities u1 and u2 

respectively, figure (a).

Fig 7.5 



 CENTRE OF MASS, MOMENTUM & COLLISION 

When u1 > u2,  
Relative velocity of approach before collision, = u1 – u2 

Therefore, two balls collide, as shown in figure (b). Let the 
collision be perfectly elastic. After collision, suppose v1 is 
the velocity of A and v2 is the velocity of B along the same 
straight line, as shown in figure (c).  
When v2 > v1, the bodies separate after collision. 
Relative velocity of separation after collision = v2 – v1 
Linear momentum of the two balls before collision  
= m1u1 + m2u2 ..(1) 
Linear momentum of the two balls after collision  
= m1v1 + m2v2 ..(2) 

As linear momentum is conserved in an elastic collision, 
therefore from equations (1) and (2) 
m1v1 + m2v2 = m1u1 + m2u2 

or, m2 (v2 – u2) = m1 (u1 – v1) ...(3) 

Total K.E. of the two balls before collision 
2 2

1 1 2 2
1 1m u m u
2 2

= + ...(4) 

Total K.E. of the two balls after collision 
2 2

1 1 2 2
1 1m v m v
2 2

= + ...(5) 

As K.E. is also conserved in an elastic collision, therefore 
from equations (4) and (5), 

2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 1m v m v m u m u
2 2 2 2

+ = +

Or, ( ) ( )2 2 2 2
2 2 2 1 1 1

1 1m v u m u v
2 2

− = −

Or, ( ) ( )2 2 2 2
2 2 2 1 1 1m v u m u v− = −       ...(6) 

Dividing, (6) by (3) we get 

( )
( )

( )
( )

2 2 2 2
2 2 2 1 1 1

2 2 2 1 1 1

m v u m u v

m v u m u v

− −
=

− −

Or, ( )( )

( )

( )( )

( )
2 2 2 2 1 1 1 1

2 2 1 1

v u v u u v u v
v u u v

+ − + −
=

− −

Or, v2 + u2 = u1 + v1 
Or, 2 1 1 2v v u u− = − ...(7) 

General equation, 2 1 1 2v v u u− = −

Hence, in one dimensional elastic collision, relative velocity 
of separation after collision is equal to relative velocity of 
approach before collision. 

From (7), 2 1

1 2

v v 1
u u

−
=

−

By definition, 2 1

1 2

v v e 1
u u

−
= =

−
(For perfectly elastic collision) 

Hence, the coefficient of restitution/resilience of a perfectly 
elastic collision in one dimension is unity. 

4.3.1 Calculation of velocities after collision 

Velocity of A: 
From (7), v2 = u1 – u2 + v1 
Putting in (3),  
we get m1v1 + m2 (u1 – u2 + v1) = m1u1 + m2 u2 
 m1v1 + m2u1 – m2u2 + m2v1 = m1u1 + m2u2

 v1 (m1 + m2) = (m1 – m2) u1 + 2 m2 u2

( )1 2 1 2 2
1

1 2 1 2

m m u 2m uv
m m m m
−

 = +
+ +

...(8) 

General equation, 
( )1 2 1 2 2

1
1 2 1 2

m m u 2m uv
m m m m
−

= +
+ +

Velocity of B : 

Put this value of v1 from (6) in (3), 
( )1 2 1 2 2

2 1 2
1 2 1 2

m m u 2m uv u u
m m m m
−

= − + +
+ +

1 2 2
1 2

1 2 1 2

m m 2mu 1 u 1
m m m m

   −
= + + −   

+ +   

1 2 1 2 2 1 2
1 2

1 2 1 2

m m m m 2m m mu u
m m m m

   + + − − −
= +   

+ +   

( )2 1 21 1
2

1 2 1 2

m m u2m uv
m m m m

−
 = +

+ +
...(9) 

General equation, 
( )2 1 21 1

2
1 2 1 2

m m u2m uv
m m m m

−
= +

+ +

NOTE: 
The expression for v2 can be obtained from the expression 
for v1, by replacing m1 by m2 and u1 by u2. The reverse is 
also true, i.e., v1 can also be obtained from v2 similarly. 

4.3.2 Special Cases 

1. When masses of two bodies are equal,

i.e., m1 = m2 = m, say

From (8), 2
1 2

2muv u
2m

= =  , 

i.e., velocity of A after collision = velocity of B before
collision.
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From (9), 1 1
2 1

1

2m uv u
2m

= =  , 

i.e., velocity of B after collision = velocity of A before
collision.

Hence, when two bodies of equal masses undergo a 
perfectly elastic collision in one dimension, their 
velocities are just interchanged. 

Fig 7.6 

2. When the target body B is initially at rest, i.e., u2 = 0

From (8), 
( )1 2 1

1
1 2

m m u
v

m m
−

=
+

      ...(10) 

From (9), 1 1
2

1 2

2m uv
m m

=
+

  ...(11) 

Three cases arises further : 

(a) When masses of two bodies are equal, i.e., m1 = m2 

using equation (10),
From, v1 = 0

From, 1 1
2 1

1

2m uv u
2m

= =

i.e., body A comes to rest and body B starts moving
with the initial velocity of A. Obviously, in such a
collision, 100% K.E. of A is transferred to the body B.
This is shown in figure above.

(b) When body B at rest is very heavy, i.e., m2 >> m1, i.e.,
m1 can be ignored compared to m2

Putting m1 = 0 in equation (8), we obtain

2
1 1 1 2

2

mv u u ; v 0
m

= − = − =

Hence, when a light body A collides against a heavy 
body B at rest; A rebounds with its own velocity and B 
continues to be at rest. This is what happens when a ball 
rebounds to the same height from which it was thrown, 
on striking a floor. 

(c) When body B at rest has negligible mass,

i.e., m2 << m1; i.e., m2 can be ignored compared to m1

Putting m2 = 0, in equation (8),

we get 1 1 1
1 1 1 2 1

1 1

m 2m uv u u . ;v 2u
m m

= = = =

Hence, when a heavy body A undergoes an elastic 
collision with a light body B at rest, the body A keeps 
on moving with the same velocity of its own and the 
body B starts moving with double the initial velocity of 
A. 

4.4 Inelastic Collision in One Dimension 
Figure below shows two bodies of masses m1 and m2 
moving with velocities, u1 and u2 respectively, along a single 
axis. They collide involving some loss of kinetic energy. 
Therefore, the collision is inelastic. Let v1 and v2 be the 
velocities of the two bodies after collision. 

Fig 7.7 
As the two bodies form one system, which is closed and 
isolated, we can write the law of conservation of linear 
momentum for the two body system as : 
Total momentum before collision (Pi) = Total momentum 
after collision (Pf) 
m1 u1 + m2 u2 = m1 v1 + m2 v2 ...(12) 

(The overhead arrows for vectors have been avoided as the 
collision is one dimensional and velocity components along 
one axis are used.) 

If we know masses m1, m2, initial velocities u1, u2 and one of 
the final velocities, we can calculate the other final velocity 
from the equation. 

Figure shows perfectly inelastic collision between two 
bodies of masses m1 and m2. The body of mass m2 happens 
to be initially at rest (u2 = 0), we refer to this body as the 
target. The incoming body of mass m1, moving with initial 
velocity u1 is referred to as the projectile. After  the 
collision, the two bodies move together with a common 
velocity V. The collision is perfectly inelastic. 
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Fig 7.8 
As the total linear momentum of the system remains 
constant, therefore Pi = Pf 
i.e., m1u2 + m2u2 = (m1 + m2) V
or, m1u1 = (m1 + m2) ( )2u 0=

or, 1 1

1 2

m uV
m m

=
+

General equation, 1 1

1 2

m uV
m m

=
+

4.5  Oblique Collision
If the initial velocities and final velocities of both the bodies 
are along the same straight line, then it is called a one-

dimensional collision or head-on collision.  
In the case of small spherical bodies, this is possible if the 
direction of travel of body 1 passes through the centre of 
body 2. 

When two bodies travelling initially along the same straight 
line collide without loss of kinetic energy and move along 
different directions in a plane after collision, the collision is 
said to be an elastic collision in two dimensions. 

Suppose m1, m2 are the masses of two bodies A and B 
moving initially along the X–axis with velocities u1 and u2 
respectively. When u1 > u2, the two bodies collide. After 
collision, let the body A move with a velocity v1 at an angle 
θ with X–axis. Let the body B move with a velocity v2 at an 
angle φ with X–axis as shown in figure. 

Fig 7.9 
As the collision is elastic, kinetic energy is conserved. 

 Total K.E. after collision = Total K.E. before collision 

Or 2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 1m v m v m u m u
2 2 2 2

+ = + ...(13) 

Or 2 2 2 2
1 1 2 2 1 1 2 2m v m v m u m u+ = + ...(14) 

As linear momentum is conserved in elastic collision, 
therefore, along the X–axis, total linear momentum after 
collision = total linear momentum before collision. 
m1v1 cos θ + m2v2 cos φ = m1u1 + m2u2 ...(15) 

Now, along Y–axis, linear momentum before collision is 
zero (as both the bodies are moving along X–axis). And 
after collision, total linear momentum along Y–axis is  
(m1v1 sin θ – m2v2 sin φ) 
 m1v1sin θ – m2v2 sin φ = 0 ...(16) 

From three equations (14), (15) and (16), we have to 
calculate four variables v1, v2, θ and φ, which is not 
possible. We have, therefore, to measure experimentally any 
one parameter, i.e., final velocities v1,v2 of A, B or their 
direction θ and φ. The rest of the three parameters can then 
be calculated from the three equations. 

When two bodies travelling initially along the same straight 
line collide involving some loss of kinetic energy, and move 
after collision, along different directions in a plane, the 
collision is said to be inelastic collision in two dimensions.  

4.5.1 Perfectly inelastic collision in two 

dimensions 

Figure shows perfectly inelastic collision between two 
bodies of masses m1 and m2. The body of mass m2 is moving 
initially with velocity u2 along X–axis. The body of mass m1 
is moving with velocity u1 at an angle θ with X–axis as 
shown. 

Fig 7.10 
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After the collision at O, the two bodies stick to each other 
and move with a common velocity V at an angle φ with X–
axis as shown in figure. 
As the system is closed and isolated, the total linear 
momentum of the system remains constant. 
Referring to figure, and equating initial momentum along 
X–axis to final momentum along the same axis, we get 
m1u1 cos θ + m2u2 = (m1 + m2) V cos φ    ...(17) 

Again, applying the law of conservation of linear 
momentum along y–axis, we get. 
m1u1 sin θ + 0 = (m1 + m2) V sin φ        ...(18) 

Knowing m1, m2 ; u1, u2 and θ, we can calculate final 
velocity V and its direction, i.e., ∠φ from equations (17) and 
(18). 
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NCERT Corner 
Important Points to Remember

1. Centre of Mass

Centre of mass of a system is the point that behaves as
whole mass of the system is concentrated on it. For
rigid bodies, centre of mass is independent of the state
of the body, i.e. whether it is in rest or in accelerated
motion, centre of mass will remain same.

• Centre of mass of two particles system,

1 1 2 2
CM

1 2

m x m xx
m m

+
=

+

Similarly, CMx for n particle system.
n

i i
1 1 2 2 n n i 1

CM n
1 2 n

i
i 1

m x
m x m x ........ m xx

m m ........ m m

=

=

+ + +
= =

+ + +





• Velocity of centre of mass (n-particles system).

1 1 2 2 n n
CM

1 2 n

m v m v .... m vV
m m .... m
+ + +

=
+ + +

• Acceleration of centre of mass,

1 1 2 2 n n
CM

1 2 n

m a m a .... m aA
m m .... m
+ + +

=
+ + +

• Momentum of centre of mass.

1 1 2 2 n n
CM

1 2 n

m p m p ... m pP
m m .... m
+ + +

=
+ + +

2. Linear Momentum

The total linear momentum of a system of particles is
equal to the product of the total mass of the system and
the velocity of its centre of mass. cmP Mv=

3. Impulse

Impulse of a force F  acting on a body for the time

interval 1t t= to 2t t= as: 
2

1

t

t

I F dt= 

And also, 

( )2 1I m v v P= − = 

    = Change in momentum due to force F . 

4. Conservation of Linear Momentum

According to law of conservation of linear momentum,
total linear momentum of a system of particles remain
constant or conserved in the absence of any external
force.
i.e, When  extF 0=

dp 0
dt

 =

 p = constant 

i.e. initial finalp p=

Also, for n number of particles 

1 2 3 np p p ...p constant+ + + =

• For collision of two bodies, the total momentum before
collision remains the same as the total momentum after
the collision.
i.e., 1 1 2 2 1 1 2 2m u m u m v m v+ = +

• Recoil velocity of gun is calculated by, 1 1
2

2

m vv
m

= −

where, m2 = mass of the gun, m1 = mass of bullet 
and v1 = velocity of the bullet. 

5. Collision

• It is an isolated event, in which two or more colliding
bodies exert strong forces on each other for a short
duration of time.

• It is mainly of two types: elastic and inelastic collision.
• For every type of collision, linear momentum of

colliding body or system is conserved.
i.e 1 1 2 2 1 1 2 2m u m u m v m v+ = +

where, m1 and m2 = masses of the body which undergo 
collision. 
u1 = initial velocity of the body of mass m1, 
u2 = initial velocity of the body of mass m2, 
v1 = final velocity of the body of mass m1, and  
v2 = final velocity of the body of mass m2. 

• But kinetic energy of the colliding body and system is
conserved in elastic collision only.

6. Coefficient of Restitution (e)

It is the ratio of relative velocity of separation after
collision to the relative velocity of approach before

collision. It is expressed as 2 1

1 2

v v
e ,

u u
−

=
−

where 

0 e 1. 
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(i) For perfectly inelastic collision, e = 0.
(ii) For perfectly elastic collision, e = 1 and for inelastic

collision 0 < e < 1.
(iii) For other collisions, it can be 0 < e < 1.

7. Head-on Collision

• For bodies with masses m1 and m2 respectively
following are the important relations for head-on
collision.

(i) When collision is elastic, final velocities for m1 i.e,
( )1 2 2 2

1 1
1 2 1 2

m m 2m uv u
m m m m

−
= +

+ +

and for m2, 
( )2 11 1

2
1 2 1 2

m m2m uv
m m m m

−
= +

+ +

(ii) When collision is inelastic

Final velocities for m1,
( ) 21 2

1 1 2
1 2 1 2

1 e mm emv u u
m m m m

+  −
= +   

+ +   

and for m2, 
( ) 1 2 1

2 1 2
1 2 1 2

1 e m m emv u u
m m m m
+   −

= +   
+ +  

• If after collision, approaching bodies move with a
common velocity, i.e. e = 0 (get stuck with one
another). then collision is said to be perfectly inelastic.

8. For perfectly elastic oblique collision

Along X-axis, 1 1 2 2 1 1 2 2m u m u m v cos m v cos+ = +   

Along Y-axis, 1 2 2 20 m v sin m v sin= − 

• If two bodies of equal masses undergo perfect elastic

oblique collision then scattering angle 
2


 +  = and 

2 2 2
1 1 2u v v= + . 

9. Rebounding of a Ball on collision with

Floor.

• Speed of the ball after nth rebound,
n n

n 0v e v e 2gh= =

• Height covered by the ball after nth rebound, 2n
nh e h=

• Total distance s covered  by the ball before it stops

bouncing , 
2

2

1 es h
1 e
 +

=  
− 

where, h = height of the ball dropped from ground and e 
= coefficient of restitution 
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Rotational Motion 

1. Kinematic of the System of
Particles

System of particles can move in different ways as observed 
by us in daily life. To understand this, we need to understand 
few new parameters.  
Rigid body: A body in which distance between any two 
particles remain same regardless of any external changes.  

1.1 Kinematic of Rotational Motion 

(i) Angular Displacement

Consider a particle moving from A to B in the
following figures.

Fig. 8.1 
Angle   is the angular displacement of the particle 
about O. 
Unit: radian (rad). 

(ii) Angular Velocity

The rate of change of angular displacement is called
as angular velocity.

Fig. 8.2 
Instantaneous Angular Velocity 

d
dt


 =

Average Angular Velocity 

t


 =


Unit → Rad/s.

Angular velocity is a vector quantity whose direction 
is given by right hand thumb rule.  
According to right hand thumb rule, if we curl the 
fingers of right hand along the direction of angular 
displacement then the right-hand thumb gives us the 
direction of angular velocity. It is always along the 
axis of the rotation. 

(iii) Angular Acceleration

Angular acceleration of an object about any point is
rate of change of angular velocity about that point.

Fig.8.3 
2

2

d d
dt dt
 

 = =

d d d.
dt d d
  

 = = 
 

avg t


 =


Unit → Rad/s2. 
Angular acceleration is also a vector quantity. 
 If  is constant, then like equations of translatory 
motion we can also write relations between    
and t. 

0

2 2
0

0

21
 

t t
2

2

t



= +  

 =  + 

 −  = 

Here, 0 is initial angular velocity and  is final 
angular velocity. 

1.2  Various Types of Motion
(i) Translational Motion

A system is said to be in translational motion, if all the
particles within the system have same linear velocity
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Example: Motion of a rod as shown below.

Fig. 8.4 

Example: Motion of body of car on a straight rod. 

Fig.8.5 

In both the above examples, velocity of all the 
particles is same as they all have equal displacements 
in equal intervals of time. 

(ii) Rotational Motion

An object is said to be in pure rotational motion, when
all the points lying on the system are in circular
motion about one common fixed axis.

Fig.8.6 
In pure rotational motion, angular velocity of all the 
points is same about the fixed axis. 

(iii) Rotational + Translational motion

An object is said to be in rotational + translational
motion, when the particle is rotating with some
angular velocity about a movable axis.

For Example 

Fig.8.7 

v = velocity of axis.  
 = Angular velocity of system about O. 

1.3 Relationship Between Kinematics 

Variables
In general, if a body is rotating about any axis (fixed or 
movable), with angular velocity  and angular acceleration 
, then velocity of any point p with respect to axis is 

p

t r

t

r

v r

a a a

a r

a v

= 

= +

= 

= 

Fig.8.8 

Example 

Fig.8.9 

B A
Lv L and v ,

2


=  = with directions as shown in 

the figure above. 
Now in rotational + translational motion, we just 
superimpose velocity and acceleration of axis on the 
velocity and acceleration of any point about the axis 
of rotation. (i.e.) 

Fig.8.10 

PO

O

v Ri

v vi

= 

=

( )

P O PO

P PO O

v v v

v v v R v i

− =

 = + =  +



Similarly, QOv R j= 

O

Q

v vi

v vi R j

=

 = + 

2. Rotational Dynamics
2.1   Torque
Similar to force, the cause of rotational motion is a physical 
quantity called a torque/moment of force/angular force. 
Torque incorporates the following factors.  
• Amount of force.
• Point of application of force.
• Direction of application of force.
Combining all the above,
Torque about point O,

r F
r.Fsin

 = 

 = 

Where, 
r = distance from the point O to point of application of force. 
F = force  
 = angle between r and F

Fig. 8.11 

Magnitude of torque can also be rewritten as 
rF or r F⊥ ⊥ =  =

Where, 
F⊥ = component of force in the direction perpendicular to r.
r⊥ = component of distance in the direction perpendicular to

F.
(i) Direction of Torque:

Direction of torque is given by right hand thumb
rule. If we curl the fingers of right hand from first
vector ( )r  to the second vector ( )F  then right-

hand thumb gives us direction of their cross
product, i.e., the torque.

(ii) Some Important Points about Torque:

Torque is always defined about a point or about an
axis.

When there are multiple forces, the net torque 
needs to be calculated. i.e., all torque about same 
point/axis.  

1 2 nnet F F F... =  +  + 

• If 0 = , then the body is said to be in rotational 
equilibrium. 

• If F 0 =  along with 0 = , then body is said to 
be in mechanical equilibrium (Translation and 
rotational equilibrium). 

• If two forces of equal magnitude, opposite direction
and do not share a line of action act to produce same
torque, then they constitute a couple. It does not
produce any translation, only rotation.

• For calculating torque, it is very important to know
the effective point of application of force.

2.2  Newton's Law in Rotation 

 = I 

Where,  I = moment of Inertia 

 = Angular Acceleration 

3. Moment of Inertia
Moment of inertia gives the measure of mass distribution 
about an axis. 

2
i iI m r= 

Where ir =  Perpendicular distance of the thi mass from the 
axis of rotation.  
Moment of inertia is always defined about an axis. 

Fig.8.12 
For example, moment of inertia for above case, 

2 2 2 2
1 1 2 2 3 3 4 4I M r M r M r M r= + + +

• SI unit → kg-m2

• Gives the measure of rotational inertia and is
analogous to mass in linear motion.
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      Particle System : 

Fig.8.13 
2 2 2

1 1 2 2 3 3I M r M r M r= + +

3.2  Moment of Inertia of Continuous 

       Bodies 

When the distribution of mass of a system of particle is 
continuous, the discrete sum 2

1 1I m r=  is replaced by an 
integral. The moment of inertia of the whole body takes the 
form  

2I r dm= 

Fig.8.14 

Keep in mind that here the quantity r is the perpendicular 
distance of point mass from axis of rotation, not the distance 
to the origin. To evaluate this integral, we must express m in 
terms of r. 

3.5  Moment of Inertia of Some 

       Important Bodies 

(i) Circular Ring

Axis passing through the centre and perpendicular to
the plane of ring.
I = MR2 

Fig.8.15 

(ii) Hollow Cylinder

I = MR2

Fig.8.16 
(iii) Solid Cylinder and a Disc

About its geometrical axis as shown below
21I MR

2
=

Fig.8.17 

(iv) Sphere

 Solid Sphere: Axis passing through the centre of
mass

22I MR
5

=

Fig.8.18 
Hollow Sphere : 

Axis passing through the centre of mass, 
22I MR

3
=

(v) Thin Rod of length l :

• Axis passing through midpoint and perpendicular to
length :

Fig.8.19 
2MI

12
=

• Axis passing through an end and perpendicular to
the rod:
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3.1 Moment of Inertia of a Discreet 



Fig.8.20 
2MI

3
=

3.4 Theorems on Moment of Inertia 
(i) Parallel Axis Theorem: Let CMI be the moment of 

inertia of a body about an axis through its centre of 
mass and let PI  be the moment of inertia of the same 
body about another axis which is parallel to the  
first one. If d is the distance between these two  
parallel axes and M is the mass of the body then 
according to the parallel axis theorem : 

Fig.8.21 
2

P cmI I Md= +

(ii) Perpendicular Axis Theorem :

Consider a planar body (i.e., a body of zero
thickness) of mass M. Let X and Y axes be two
mutually perpendicular lines in the plane of the body.
The axes intersect at origin O.

Fig.8.22 
Let xI = moment of inertia of the body about X–axis.
Let yI = moment of inertia of the body about Y–axis.
Then the moment of inertia of the body about Z– axis 
(Passing through O and perpendicular to the plane of 
the body) is given by :  

z x yI I I= +  
The above result is known as the perpendicular axis 
theorem. 

If M is the mass and I is the moment of inertia of a rigid body 
about a given axis then the radius of gyration (K) of the body 
about that axis is given by :

IK
M

=

ring disc
Re.g. K R, K
2

= = (About an axis passing through 

the com and perpendicular to the plane of body)

4. Angular Momentum

and Angular Impulse
4.1 Angular Momentum 
(i) For a particle

 Angular momentum about a point (O) is given as
( ) ( )L r p r mv m r v=  =  = 

where r  is position vector of the particle w.r.t. O
and v  is velocity of particle

(ii) For a particle moving in a circle

For a particle moving in a circle of radius r with a
speed v, its linear momentum is mv, magnitude of
angular momentum (L) is given as :
L mvr mvr
As being 90 , sin 90 1

⊥= =

   =

Direction of L is out of the plane of circle. 

Fig.8.23 
(iii) For a rigid body (about a fixed axis)

L = sum of angular momentum of all particles about
that axis

( )

( )

1 1 1 2 2 2 3 3 3
2 2 2

1 1 2 2 3 3

2 2 2
1 1 2 2 3 3

L m v r m v r m v r ....
L m r m r m r .... v r

L m r m r m r ....

L I

 = + + +

 = + + + = 

 = + + + 

 = 

Angular momentum is also a vector and its direction 
is same as that of  
We know that, 
L I=   

net
dL dI I
dt dt


= =  =  (Considering I constant) 

 Similar to the definition of linear force in linear 
motion, Torque can be defined as the rate of change 
of angular momentum. 
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3.5  Radius of Gyration 



If net 0 =

dL 0
dt

 =

f i

L constant

L L

 =

 =

4.2 Angular Impulse

J dt L=  = 

5. Work and Energy
5.1 Work Done by a Torque

Consider a rigid body acted upon by a force F at perpendicular 
distance r from the axis of rotation. Suppose that under this 
force, the body rotates through an angle d.  

Work done = force × displacement 

dW  F(rd )
dW d

= 

 =  

 Work done = (torque) × (angular displacement) 

( )W d Where is function of

dW dPower
dt dt

 =    


= =  = 



5.2 Kinetic Energy 
Rotational kinetic energy of the system rotating about a 
fixed axis 

( )

2 2
1 1 2 2

2 2 2 2
1 1 2 2

2 2 2 2
1 2 2 3 3

1 1m v m v ....
2 2
1 1m r m r ....
2 2
1 m r mr m r ....
2

= + +

=  +  +

= + + + 

Hence rotational kinetic energy of the system 21 I
2

= 

Where I = Moment of inertia about the axis. 

NOTE: 

Comparing the expression of rotational kinetic energy 
with 1/2 mv2, we can say that the role of moment of 
inertia (I) is same in rotational motion as that of mass in 
linear motion. It is a measure of the resistance offered 
by a body to a change its rotational motion. 

The total kinetic energy of a body which is translating as 
well as rotating is given by : 

translational rotational

2 2
CM CM

K K K
1 1K MV I
2 2

= +

= + 

Where, 

VCM = speed of the centre of mass  
ICM = moment of inertia about axis passing through CM. 
 = angular velocity of rotation  

6. Rolling
Rolling motion is a combination of rotation and translation
In case of rolling all point of a rigid body have same angular 
speed but different linear speed.  

Fig.8.24 

6.1 Pure Rolling (without Slipping) 

For a rolling motion to be pure rolling the velocity of point of 
contact of body with platform should be equal for both rolling 
body and platform. 

Fig.8.25 
(i) General case (when surface is moving)

A B

cm B

V V
V R V
=

 −  =

In terms of acceleration: cm Ba R a−  =

(ii) special case (when VB = 0)

cm

cm

V R 0
V R
−  =

 = 

6.2 Total KE of Rolling Body 

Fig. 8.26 

(i) 2
P

1K I
2

= 

Or

(ii) 2 2
cm cm

1 1K I MV
2 2

=  +

Here,  (a) 2
P cmI I MR= + (parallel axes theorem)

 ROTATIONAL MOTION 

4.2 Conservation of Angular Momentum 



(b) cmV R=  (condition for pure rolling) 

NOTE: 

Friction is responsible for the motion, but work done or 
dissipation of energy against friction is zero in pure 
rolling motion as point of application has zero velocity. 

6.3 Forward Slipping 

Fig.8.27 
The bottom most point slides in the forward direction w.r.t. 
ground, so friction force acts opposite to velocity at lowest 
point i.e., opposite to direction of motion.  
Example: When sudden brakes are applied to car its ‘v’ 
remain same while ‘r’ decreases so it slides on the ground. 

6.4 Backward Slipping

Fig.8.28 
The bottom most point slides in the backward direction w.r.t. 
ground, so friction force acts opposite to velocity i.e., 
friction will act in the direction of motion. 
Example: When car starts on a slippery ground, its wheels 
have small ‘v’ but large ‘ωr’ so wheels slips on the ground 
and friction acts against slipping. 

6.5 Rolling and Sliding Motion on an

      Inclined Plane 

(i) Pure rolling on an incline plane

Fig.8.29 

R

2

gsina I1
mR


=

+

If initial velocity of body is zero then by using equation 
of motion, 

2 2
R

2

2gsin hV 0
I sin1

MR


− =


+

R

2

2ghV I1
MR

 =

+

Also, R 2

1 2h It 1
sin g MR

 
= + 

  

Where, VR = Final velocity of com of rolling body, 
tR = Time taken by body to reach the ground, 

(ii) Sliding on an incline plane

Fig.8.30 
Using energy conservation, 

2
s

s

1 mV mgh
2

V 2gh

=

 =

Component of acceleration along incline is g sin. 

Time taken by body to reach ground by sliding: 

2
s

s

h 1 gsin t
sin 2

1 2ht .
sin g

= 


 =

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1. Ideally a rigid body is one for which the distances
between different particles of the body do not change,
even though there are forces acting on them.

2. A rigid body fixed at one point or along a line can have
only rotational motion. A rigid body not fixed in some
way can have either pure translational motion or a
combination of translational and rotational motions.

3. In rotation about a fixed axis, every particle of the rigid
body moves in a circle which lies in a plane
perpendicular to the axis and has its centre on the axis.
Every point in the rotating rigid body has the same
angular velocity at any instant of time.

4. In pure translation, every particle of the body moves
with the same velocity at any instant of time.

5. Angular velocity is a vector quantity. Its magnitude is
d
dt


 = and it is directed along the axis of rotation. For

rotation about a fixed axis this vector   has a fixed 
direction. 

6. The linear velocity of a particle of a rigid body rotating
about a fixed axis is given by v r,=   where r  is
the position vector of the particle with respect to an
origin along the fixed axis. The relation applies even to
more general rotation of a rigid body with one point
fixed. In that case r  is the position vector of the
particle with respect to the fixed point taken as the
origin.

7. The angular momentum of a system of n particles about
the origin is

n

t t
t 1

L r p
=

= 

8. The torque or moment of force on a system of n
particles about the origin is

n

t t
t 1

r F
=

 = 

9. A rigid body is in mechanical equilibrium if

(1) It is in translational equilibrium, i.e., the total external
force on it is zero: tF 0,= and 

(2) It is in rotational equilibrium, i.e., the total external
torque on it is zero: t tt r F 0. =  = 

10. The centre of gravity of an extended body is that point
about which the total gravitational torque on the body
is zero.

11. The moment of inertia of a rigid body about an axis is
defined by the formula 2

i iI m r=   where ir is the 

perpendicular distance of the ith point of the body from 
the axis.  

12. The theorem of parallel axes: 2
comI ' I Ma ,= + allows 

us to determine the moment of inertia of a rigid body 
about an axis as the sum of the moment of inertia of the 
body about a parallel axis through its centre of mass 
and the product of mass and square of the perpendicular 
distance between these two axes. 

13. Rotation about a fixed axis is directly analogous to
linear motion in respect of kinematics and dynamics.

14. The kinetic energy of rotation about an axis is
21K I .

2
= 

15. For a rigid body rotating about a fixed axis of rotation,
L = I, where I is the moment of inertia about that axis.

16. The angular acceleration of a rigid body rotating about
a fixed axis is given by I = .

17. If the external torque  acting on the body about the axis
is zero, then angular momentum about the axis (L = I)
of such a rotating body is constant.

18. For rolling motion without slipping on ground vcm =
R, where vcm is the velocity of translation (i.e., of the
centre of mass), R is the radius and m is the mass of the
body. The kinetic energy of such a rolling body is the
sum of kinetic energies of translation and rotation:

2 2
cm cm

1 1K mv I
2 2

= + 
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Gravitation 

Introduction 
Gravity is the force of attraction exerted by earth towards is 
centre on a body lying on or near the surface of earth. 
Gravity 
is merely a special case of gravitation and is also called 
earth’s gravitational pull. 
Weight of a body is defined as the force of attraction exerted 
by the earth on the body towards its centre. 
The units and dimensions of gravity pull or weight are the 
same as those of force. 

1. Newton’s Law of Gravitation
1.1 Definition 

Every particle attracts every other particle with a force 
which is directly proportional to the product of their masses 
and inversely proportional to the square of the distance 
between them. 

Fig. 9.1 

1.2 Mathematical Form 

If m1 and m2 are the masses of the particles and r is the 
distance between them, the force of attraction F between the 
particles is given by 

1 2
2

1 2
2

m mF
r

m mF G
r



 =

Where G is the universal constant of gravitation. 
Universal gravitational constant is measured in 2 2N m / kg

The dimensional formula is 3 1 2L M T− −   universal 

gravitational constant 
The value of G is: 11 2 26.67408 10 Nm / kg−

1.3 Vector Form 

In vector form, Newton’s law of gravitation is represented 

in the following manner. The force ( )21F exerted on particle 

m2 by particle m1 is given by, 

( ) ( )1 2
21 122

m m ˆF G r ... i
r

=

Where ( )12r̂  is a unit vector drawn in the direction of vector 

from particle m2 to 

particle m1. Similarly, the force ( )12F exerted on particle m1

by particle m2 is given by 

( ) ( )1 2
12 122

m m ˆF G r ... ii
r

= −

From (i) and (ii) 

12 21F F = −  

2. Acceleration due to Gravity
2.1 Definition 

Acceleration due to gravity is the acceleration gained by a 
an object due to gravitational force. It SI unit is 2m / s . It 
has both magnitude direction, hence, it is a vector quantity. 
Acceleration due to gravity is represented by g.  
The stranded value of g on the surface of earth at sea level is 

29.8m / s .  

2.2 The Acceleration due to Gravity at a 

Height h above the Earth’s Surface 

Let M and R be the mass and radius of the earth and g be 
the acceleration due to gravity at the earth’s surface. 
Suppose that a body of mass m is placed on the surface of 
the earth. 

( )

2

2

GMmmg
R

GMg ... i
R

 =

 =

Now suppose that the body is raised to a height h, above 
the earth’s surface,  

( )
( )n 2

GMmMg .... ii
R h

=
+
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Fig. 9.2 
Dividing eq (ii) by eq (i), we get, 

( )

( )

2
h

2

2

h 2

g R
g R h

Rg g
R h

=
+

 
 =  

+  

2.3 Acceleration due to Gravity at a Very 

Small Height 

2

h

2

h

R hg g
R

hg g 1
R

−

−

+ 
=  

 

 
= + 

 

If h << R, then neglecting high power’s of ‘h’ we get, 

h
2hg g 1
R

 
= − 

 

2.4 Effect of Depth on a Acceleration due 

to Gravity 

Also g in terms of  

2

GMg
R

=

If  is density of the material of earth, then 
3

3

2

4M R
3

4G R
3g
R

4g GR
3

=  

  

 =

 =  

Let gd be acceleration due to gravity at the point B at a 
depth d below the surface of earth. A body at the point B 
will experience force only due to the portion of the earth of

radius OB (R – d). The outer spherical shell, whose 
thickness is d, will not exert any force on body at point B. 
Because it will acts as a shell and point is inside. 

Fig. 9.3 

Now, ( )
34M R d

3
 =  − 

( )

( ) ( )

1

d 2

d

GMg
R d

4or g G R d ... ii
3

=
−

=  − 

Dividing the equation (ii) by (i), we have 

( )
( )d

d

4 G R dg R d d3 or g g 1 .. iii
4g R RGR
3

 − 
−  

= = = − 
  

Therefore, the value of acceleration due to gravity 
decreases with depth. 

2.5 Variation of ‘g’ with Latitude due to 

Rotational Motion of Earth 

Due to the rotational of the earth the force 2mr cos 

radially outwards. Hence the net force of attraction exerted 
by the earth of the particle and directed towards the centre 
of the earth is given by 

2mg mg mr cos = −  

where g  is the value of the acceleration due to gravity at 
the point P. 
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Fig. 9.4 
2g g r cos = −  

Now, r R cos=  (where R is the radius of the earth) 
Then ( ) 2g g Rcos cos = −   

2 2g g R cos = −  

The effective acceleration due to gravity at a point ‘P’ is 
given by, 

2 2g g R cos = −  

Thus value of ‘g’ changes with  and   

1. At poles,

2 2

90
g g R cos 90
g g

 = 

 = −  

 =

This is maximum acceleration due to gravity. 

2. At equator

2 2

2

0
g g R cos 0
g g R

 =

 = − 

 = − 

This is minimum acceleration due to gravity. 
Variation due to shape. 

NOTE: 

The variation of acceleration due to gravity according to 
the depth and the height from the earth’s surface can be 
expressed with help of following graph. 

Fig. 9.5 

3. Gravitation Field and
Gravitation Potential

3.1 Gravitational Field 

The space surrounding the body within which its gravitational 
force of attraction is experienced by other bodies is called 
gravitational field. Gravitational field is very similar to 
electric field in electrostatics where charge ‘q’ is replaced by 
mass ‘m’ and electric constant ‘K’ is replaced by gravitational 
constant ‘G’. The intensity of gravitational field at a points is 
defined as the force experienced by a unit mass placed at that 
point.  

FE
m

=

The unit of the intensity of gravitational field is N kg-1. 
Intensity of gravitational field due to point mass: 
The force due to test mass m0 placed at point P is given 
b: 

0
2

GMm
F

r
=

Hence 2
0

F GME E
m r

=  =

In vector form 2

GM ˆE r
r

= −

Dimensional formula of intensity of gravitational field 

 

2
0 2

MLTF M LT
m M

−

−
    = = =  

3.2 Gravitational Potential 

The gravitational potential at any point in a gravitational 
field is defined as the work done to bring a unit mass slowly 
from 
infinity to that point. 
1. The gravitational potential (V) at a point at distance r from
a point mass M is given by,

GMV
r

= −  (Where G is the constant of gravitation) 

2. The work done on a unit mass is converted into its
potential energy. Thus, the gravitational potential at any
point is equal to the potential energy of a unit mass placed
at that point.

3. If a small point mass m is placed in a gravitational field at
a point where the gravitational potential is V, the gravitational
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potential energy (P.E.) of the mass m is given by. 
P.E. = mass × gravitational potential 
P.E = mV

GMmP.E
r

= −

3.3 Gravitational Potential Energy 

Gravitational potential energy of a body at a point is 
defined as the work done in slowly bringing the body from 
infinity 
to that point. 
Let a body of mass m is displaced through a distance ‘dr’ 
towards the mass M, then work done given by, 

r

2 2

GMm GMmdW Fdr dr dW dr
r r



= =  = 

Gravitational potential energy, 
GMmU

r
= −

(i) From above equation, it is clear that gravitational potential
energy increases with increase in distance (r) (i.e. it
becomes less negative).
(ii) Gravitational P.E. becomes maximum (or zero) at r = 
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Object Potential (V) Electric field ( E ) Figure 

Ring 

( )
1/22 2

GMV
a r

−
=

+ ( )
3/22 2

GMr ˆE r
a r

−
=

+

Thin 
circular 

2 2
2

2GMV a r r
a

−  = + −
  2 2 2

2GM r ˆE 1 r
a r a

 
= − − 

+ 

Uniform 
Thin 
spherical 
shell 

(a) Point P
inside the
shell (r < a)

(b) Point P
outside the
shell (r > a)

GMV
a

= −

GMV
r

= −

E 0=

2

GM ˆE r
r

−
=
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Uniform 
Solid sphere 
(a) Point P
inside the
sphere (r 

a)

(b) Point P
outside the
sphere (r ≥
a)

( )2 2
3

GMV 3a r
2a

= − −

GMV
r

= −

3

GMr ˆE r
a

−
=

2

GM ˆE r
r

−
=
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4. Escape Velocity of a Body
4.1 Expression for the Escape Velocity of 

A Body at Rest on the Earth’s Surface

The minimum velocity with which a body should be 
projected from the surface of the earth, so that it escapes 
from the earth’s gravitational field, is called the escape 
velocity. Thus, if a body or a satellite is given the escape 
velocity, its kinetic energy of projection will be equal to its 
binding energy. 
Kinetic Energy of projection = Binding Energy. 

2
c

c

1 GMmmv
2 R

2GMv
R

 =

 =

4.2 Expression for ‘Ve’ in Terms’s of ‘g’ 

The escape velocity for any object on the earth’s surface 
is given by. 

e
2GMv

R
=

If m is the mass of the object, its weight mg is equal to the 
gravitational force acting on it.

2

2

GMmmg
R

GM gR

 =

 =

Substituting this value in the expression for ve we get,

ev 2gR=

4.3 Expression for ‘Ve’ in Terms’s of 

Density 

We have, 

e
2GMv

R
=

Let  be the mean density of the planet. Then, 

3

3
e

e

4M R
3

2G 4v R
R 3

Gv 2R
3

=  

=   

 
=

5. Satellite
5.1 Definition 
Any smaller body which revolves around another larer 
body under the influence of its gravitation is called a 
satellite. The satellite may be natural or artificial. 

1. The moon which revolves around the earth, is a satellite
of the earth. There are sixteen satellites revolving around
the planet Jupiter. These satellite are called natural
satellites.

2. A satellite made and launched into circular orbit by man is
called an artificial satellite. The first satellite was launched
by USSR named SPUTNIK–I and the first Indian satellite
was ‘ARYABHATTA’.
There are two types of satellites:
1. GEO stationary satellite
2. SPY satellite
Let’s discuss GEO stationary satellite

Fig 9.6 
We know that the earth rotates about tis axis with angular 
velocity earth and time period earthT 24hours= . Suppose a 
satellites is set in an orbit which is in plane of the equator, 
whose   is equal to earth , (or its T is equal to 

earthT 24hours= ) and direction is also same as that of earth. 
Then as seen from earth, it will appear to be stationery. This 
type of satellite is called geo-stationery satellite.  

satellite earth

satellite earthT T 24hr.
 = 

 = =

So time period of a geo-stationery satellite must be 24 hours. 
To achieve T = 24 hour, the orbital radius geo-stationery 
satellite. 
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2
2 3

e

4T r
GM

 
=  

 

Putting the values, we get orbital radius of geo-stationery 
satellite er 6.6R= (here Re = Radius of the earth) height from 

the surface eh 5.6R= .

6. Period of Revolution of a
Satellite

The time taken by a satellite to complete one revolution 
round the earth is called its period or periodic time (T). 
Consider a satellite of mass m revolving in a circular orbit 
with a orbital velocity 0v  at a height h above the surface of 
the earth. Let M and R be the mass and the radius of the 
earth respectively. The radius (r) of the circular orbit of the 
satellite is r = R + h. For the circular motion, 

Fig. 9.7 

( )0
GMv ... i

r
 =

If T is the period of revolution of the satellite,

Period (T) 
0

circumference of orbit 2 r
critical velocity v


= =

2 rR
GM

r


= ...(From i) 

3rT 2
GM

 = 

This expression gives the periodic time of the satellite.
Squaring the expression, we get

2 3
2 4 rT

GM


 =

2 3T r  ...(since G and M are constants)
Thus, the square of the time period of revolution of a satellite 
is directly proportional to the cube of the radius of its orbit  

7. Orbital Velocity
7.1 Definition

The horizontal velocity with which a satellite must be 
projected from a point above the earth’s surface, so that it 
revolves in a circular orbit round the earth, is called the 
orbital velocity of the satellite. 

 

Suppose that a satellite of mass m is raised to a height h 
above the earth’s surface and then projected in a horizontal 
direction with the orbital velocity 0v . The satellite begins 
to move round the earth in a circular orbit of radius, R + h, 
where R is the radius of the earth. 

Fig.9.8 

The gravitational force acting on the satellite is 
( )

2

GMm ,
R h+

where M is the mass of the earth and G is the constant of 
gravitation. 
For circular motion, 

( ) ( )

( )

2
0

2

0

mv GMm ,
R h R h

GMv
R h

=
+ +

 =
+

This expression gives the orbital velocity of the satellite. 
From the expression, it is clear that the orbital velocity 
depends upon. 
1. Mass of the earth
2. Radius of earth and
3. Height of the satellite above the surface of the earth.

7.2 An Expression for the Orbital 
Velocity of a Satellite Revolving Round 
the Earth
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Let M and R be the mass and radius of the earth and m be 
the mass of the body. When orbiting close to the earth’s 
surface, the radius of the orbit is almost equal to R. If ve is 
the critical velocity of the body, then for a circular orbit. 
Centripetal force = Gravitational force 

( )

2
c 2

c

GMmmv
R

GMv ... i
R

 =

 =

If ve is the escape velocity from the earth’s surface, 
K.E. of projection = Binding energy 

( )

2
e

e

1 GMmmv
2 2

2GMv ... ii
R

 =

 =

 
  ve  =  2vc

  

 
 

 
 

Fig. 9.9 

1. If the velocity of the projection is less than the orbital
velocity then the satellite moves in elliptical orbit, but the
point of projection is apogee and in the orbit, the satellite
comes closer to the earth with its perigee point lying at

 
 
 

 

 

Launching Of An Artificial Satellite Around Earth 

Fig. 9.10

The satellite is placed upon the rocket which is launched 
from the earth. After the rocket reaches its maximum 
vertical height h, a spherical mechanism gives a thrust to 
the satellite at point A (figure) producing a horizontal 
velocity v. The total energy of the satellite at A is thus, 

21 GMmE mv
2 R h

= −
+

The orbit will be an ellipse (closed path), a parabola, or an 
hyperbola depending on whether E is negative, zero, or 
positive. In all cases the centre of the earth is at one focus 
of the path. If the energy is too low, the elliptical orbit will 
intersect the earth and the satellite will fall back. 

7.3  The  Escape  Velocity  of  a  Body  from

  the  Surface  of  the  Earth  is  Times

  its  Critical  Velocity  When it  Revolves

  Close to the  Earth’s  Surface

From Eq (i) and Eq.  (ii), we get,

7.4  Different  Cases of Projection

When a satellite is taken to some height above the earth
and then projected in the horizontal direction, the following
four cases may occur, depending upon the magnitude of
the  horizontal velocity.

180°. If it enters the atmosphere while coming towards 
perigee it will loose energy and spirally comes down. If it 
does not enters the atmosphere it will continue to move in 
elliptical orbit.

2.  If  the  velocity  of  the  projection  is  equal  to  the  orbital
velocity  then  the  satellite  moves  in  circular orbit round  the
earth.

3.  If the velocity of the projection is greater than the orbital 
velocity but less than the escape velocity, then the satellite 
moves in elliptical orbit and  its apogee, or point of greatest 
distance from the earth, will be greater than projection 
height.

4.  If the velocity of the projection is equals to the escape 
velocity, then the satellite moves in parabolic path.
5.  It the velocity of the  projection is greater than the escape 
velocity, then orbit will hyperbolic and will escape the 
gravitational pull of the earth and continue to travel 
infinitely.

NOTE:



 

Otherwise, it will keep moving in a closed orbit, or will 
escape from the earth, depending on the values of v and h. 
Hence a satellite carried to a height h (<< R) and given a 
horizontal velocity of 8 km/sec will be placed almost in a 
circular orbit around the earth (figure). If launched at less 
than 8 km/sec, it would get closer and closer to earth until 
it hits the ground. Thus, 8 km/sec is the critical (minimum) 
velocity. 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

1. sensation of weightlessness experienced by an
astronaut is not the result of there being zero
gravitational acceleration, but of there being zero
difference between the acceleration of the spacecraft
and the acceleration of the astronaut.

2. The most common problem experienced by astronauts
in the initial hours of weightlessness is known as space
adaptation syndrome (space sickness).
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GRAVITATION

4.  Therefore  astronaut  does not produce any action on the 
floor of the satellite. Naturally the floor does not exert any
force of reaction on the astronaut. As there is no reaction,
the astronaut has a feeling of weightlessness. (i.e. no sense
of his own weight).

NOTE:

10. Kepler’s Laws
10.1 Law of Orbit

Each Planet moves  around  the sun in an elliptical orbit
with the sun at one of the foci as shown in figure. The 
eccentricity of an ellipse is defined as the ratio of the

distance SO and AO i.e.  

8.  Communication Satellite
An artificial satellite revolving in a circular obrit round the 
earth in the same sense of the rotational of the earth and 
having same period of revolution as the period of rotation
of the earth (i.e. 1 day =  24 hours = 86400 seconds) is
called as geo-stationary or communication satellite.
As relative velocity of the satellite with respective to the 
earth is zero it appears stationary from the earth’s surface.
Therefore it is know as geo-stationary satellite or 
geosynchronous satellite.

1.  The height of the communication satellite above the earth’s
surface is about 36000 km and its period of revolution is 24 
hours or 24 × 60 × 60 seconds.

8.1 Uses of the  Communication  Satellite

1.F  or sending TV  signals over large distances on the earth’s
surface.

2.T elecommunication.

3.W eather forescasting.

4.F or taking photographs of astronomical objects.

5.F or studying of solar and cosmic  radiations.

9.  Weightlessness
1.T  he  gravitational force with which a body is attracted 
towards the centre of earth is called the weight of body.

2.W  hen an astronaut is on the surface of earth, gravitational
force acts on him. This gravitational force is the weight of 
astronaut and  astronant exerts this force on the surface of 
earth.  The  surface  of  earth  exerts  an  equal  and  opposte
reaction  and  due  to  this  reaction  he  feels his  weight  on  the
earth.

3.F  or an astronaut in an orbiting satellite, the satellite and 
astronaut both  have same acceleration towards the centre
of earth and this acceleration is equal to the acceleration due
to  gravity  at the place.

Fig. 9.11

The  distance of closest approach with sun at F1  is AS.
This  position  is called perigee. The greatest distance (BS)
of the planet from the sun is  at position  B  apogee.
At,  Perigee (AS) = AO  –  OS = a  –  ea = a (1  –  e)
At,  apogee (BS) = OB + OS = a + ea = a (1 +  e)

10.2  Law of  Area

The line joining the sun and a planet sweeps out equal
areas in equal intervals of time. A planet takes the same
time to travel from A to B as from C to D as shown in figure.



   

(The shaded areas are equal). Naturally the planet has to 
move faster between C to D. 

Fig. 9.12 

Areal velocity 
area swept

time
=

( ) 2
2

1 r rd 1 d 1 mr L2 r
dt 2 dt 2 m 2m


 

= = = =

Hence L
2m

 = constant. [As L = constant] 

  

 
 

 
T2    a3

 

Body Sun Earth  Moon 

Mean radius, 86.95 10 66.37 10 61.74 10

Mass, kg 301.97 10 245.96 10 227.30 10

Mean density, 
103 kg/m3 

1.41 5.52 3.30 

Period of rotation 
about axis, days 

25.4 1.00 27.3 

  

 

Inertial mass of a body is related to its inertia in linear 
motion; and is defined by Newton’s second law of motion. 
Let a body of mass Gm move with acceleration a under the 
action of an external force F. According to Newton’s 
second law of motion, F = mi a or mi = F/a 
Thus, inertial mass of a body is equal to the magnitude of 
external force required to produce unit acceleration in the 
body. 

 

 

Gravitational mass of a body is related to gravitational pull 
on the body and is defined by Newton’s law of 
gravitational. 

( )
G

G2 2

GMm F FF or m
IR GM / R

= = =

The mass mG of the body in this sence is the gravitational 
mass of the body. The inertia of the body has no effect on 
the gravitational mass of the body. mG = F 
Thus, Gravitational mass of a body is defined as the 
magnitude of gravitational pull experienced by the body in 
a gravitational field of unit intensity. 

 

Fig. 9.13 
From mass 2M

GRAVITATION

Inertial  Mass

NOTE:

Gravitational  Mass

NOTE:

10.3  Law of  Periods

The square of the time for the planet to complete a 
revolution about the sun is proportional to the cube of
semimajor axis of the elliptical orbit.

Astronomical Data

11.  Binary Star System
11.1  Double  Star  System
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In reality all the planets arel satellite revolves around their 
COM but if the mass of planet is very large as compare to 
the mass of satellite, then we can assume that planet is 
stationary and satellite is removing around it in circular path 
(because 1r 0→ ) 
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Kepler First law – The Law of Orbits 

According to Kepler’s first law,” All the planets revolve 
around the sun in elliptical orbits having the sun at one of the 
foci”. The point at which the planet is close to the sun is 
known as perihelion and the point at which the planet is 
farther from the sun is known as aphelion. 

Kepler’s Second Law – The Law of Equal Areas 

Kepler’s second law states” The radius vector drawn from the 
sun to the planet sweeps out equal areas in equal intervals of 
time” 

Kepler’s Third Law – The Law of Periods 

According to Kepler’s law of periods,” The square of the time 
period of revolution of a planet around the sun in an elliptical 
orbit is directly proportional to the cube of its semi-major 
axis”. 

T2 ∝ a3

Shorter the orbit of the planet around the sun, shorter the time 
taken to complete one revolution. 
• An artificial satellite revolving in a circular orbit orbit

round the earth in the same sense of the rotational of the
earth and having same period of revolution as the
period of rotation of the earth (i.e. 1 day = 24 hours =
86400 seconds) is called as geo-stationary or
communication satellite.

GRAVITATION

NCERT Corner
Important Points to Remember

•  Gravitational force:  The constitutents of the  universe
  are galaxy, stars, planets, comets, asteriods, meteroids.
  The force which keeps them bounded  together is called
  gravitational force.
•  Gravitation is a  natural  phenomenon by which  particles
  get  attracted  towards one another.
•  NEWTON’S LAW OF GRAVITATION: Every
  particle attracts every other particle with a force which
  is directly proportional to the product of their masses
  and inversely proportional to the square of the distance
  between them.
•  Variation of ‘g’ with latitude due to Rotational motion
  of  Earth:

Due to the rotational of the earth the force mrw2 cos l 
acts radially outwards. Hence the net force of attraction
exerted by the earth of the particle and directed towards
the centre of the earth is given by mg’ = mg  –  mrw2 
cosl where g’ is the value of the acceleration due to 
gravity:
1.A  t poles, l = 90, g’ = g  –  R w2 cos2 90. g’ = g This is
maximum acceleration due to gravity.
2.A  t equator l = 0, g’ = g  –  Rw2 cos2 0 g’ = g  –  Rw2 
This is minimum acceleration due to gravity

•  Any smaller body  which revolves around another larger
  body under the influence of its gravitation is called a
  satellite. The satellite may be natural or artificial.
•  The horizontal velocity with which a satellite must be
  projected from a point above the earth’s  surface, so
  that it revolves in a circular orbit round the earth, is
  called the orbital velocity of the satellite.
•  Escape  Velocity: The minimum velocity with which a
  body should be protected from the surface of the earth,
  so that it escapes from the earth’s gravitational field, is
  called the escape velocity.
•  The gravitational potential at any point in a
  gravitational field is defined as the work done to bring
  a unit mass from slowly infinity to that point.
•  Binding Energy: The minimum energy which must be
  supplied to a satellite, so that it can escape from the
  earth’s gravitation field, is called the binding energy of
  a satellite.
•  Kepler’s laws of planetary motion



10
MECHANICAL PROPERTIES 

OF SOLIDS



Mechanical Properties of Solids

1.  Elastic Behaviour of Solids
1.1 Rigid Body
A body whose size and shape cannot be changed is called 
rigid body however if the applied force is large enough then 
it can change its shape and size. 

1.2  Deforming Force and Restoring 
Force

• Deforming force is the external force applied on a
body which tends to change the natural size or shape
of the body.

• Under the action of deforming force, a body opposes
any change in its shape & size due to the net effect of
internal (molecular) forces. The resulting force which
opposes the deformation is knows as Restoring Force.

1.3  Elasticity
• The property of a body due to which it opposes the

action of the deforming forces is called Elasticity. 
• A material is said to be elastic if it returns back to its

original shape or size, when the deforming forces are
removed.

• Plastic materials on the other hand, remains
permanently distorted when the deforming forces are
removed. The property is called Plasticity.

• Some of the examples of elastic materials are rubber
band, steel, etc.

2.  Stress & Strain
2.1  Stress
• The deforming action is measured (described) in terms

of a physical quantity, known as stress, that is 
developed in the body. 

Restoring forceStress
Area of cross section

=

• Unit N/m2 or pascal.

In general there are three types of stress as given below: 
• Longitudinal Stress When the restoring force is

normal to the area of cross section, then it is known as
Longitudinal stress. It is of two types.

• Tensile Stress If the stress produced in an object is
due to increase in its length, then it is called Tensile
stress.

• Compressive Stress If the stress produced in an
object due to decrease in its length, then it is called
Compressive stress.

• Volumetric Stress The restoring force acting per unit
area inside the object opposing change in volume is
called Volumetric stress.

• Shearing Stress When a force applied on an object
along the tangential direction of the surface of the
object, then stress produced in the object is called
Shearing stress.

2.1.1  Breaking Stress 
• The minimum stress after which the object breaks is

called Breaking stress.
• A wire of length will break due to its own weight,

when Breaking stress
dg

=

where, d = density of material of wire 
and      g = acceleration due to gravity. 

2.2  Strain
• The deformation of the solid is described in terms of a

physical quantity strain, that is created in the body as a
result of deformation force.

Change in dimsnionStrain
Orignal dimension

=

• It has no unit.

There are three types of stresses results in three types of 
strain as given below: 
• Longitudinal Strain ( )LS : It is the change in length 

per unit length of the body on application of force, i.e. 
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L
Change in length LS
Original length L

∆
= =

• Bulk or Volume Strain ( )VS : It is the change in 

volume per unit volume of the object on application of 

force, i.e., V
Change in volume VS
Original volume V

∆
= = . 

• Shearing Strain ( )SS : It is the ratio of displacement 

of the upper surface to the distance between two 
layers, i.e., 

S
Relative displacement of layerS tan
Distance between two layers

= = θ

where, θ  shearing angle. 

Fig. 10.1 

NOTE: 
Shearing strain 2= × longitudinal strain. 
and volume strain 3= × longitudinal strain. 

2.3  Hooke’s Law
• If the deforming forces are within a limit (known as

elastic limit), the stress created in the body is
proportional to the resulting strain. i.e., stress strain∝

The ratio stress
strain

is known as Modulus of Elasticity.

• According to various types of stresses, we have
corresponding types of modulii of elasticity.

• Units of modulus of elasticity is same as the unit of
stress.

2.4 Stress-Strain Graph 
If by gradually increasing the load on a vertically suspended 
metal wire, a graph is plotted between stress (or load) and 
longitudinal strain (or elongation) we get the curve as shown 
in figure. From this curve it is clear that:  

Fig. 10.2 
a) When the strain is small (<2%) (i.e., in the region OP)

• Stress is proportional to strain.
• Hooke’s law is obeyed.
• The point P is called limit of proportionality and
• Slope of line OP gives the Young’s modulus of

the material of the wire. Y tan= θ .
NOTE: 

Elastic limit 
The maximum value of the stress within which the body 
regains its original shape and size. 

b) If the strain is increased a little bit (i.e., in the region
PE.)
• The stress is not proportional to strain.
• The wire still regains its original length after the

removal of stretching force. 
• Point E is known as elastic limit or yield-point.
• The region OPE represents the elastic behaviour of

the material of wire.
• Yield point is the stress beyond which the material

becomes plastic.

c) If the wire is stretched beyond the elastic limit E (i.e.,
between EA)
• The strain increases much more rapidly
• If the stretching force is removed the wire does not

come back to its natural length. Some permanent
increase in length takes place.

d) If the stress is increased further, then
• A very small increase in stress produces a very

large increase in strain (region AB).
• After reaching point B, the strain increases even if

the wire is unloaded and it ruptures at C.
• In the region BC the wire literally flows. The

maximum stress corresponding to B after which the
wire begins to flow and breaks is called breaking or
tensile strength.
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• The region EABC represents the plastic behavior of
the material of wire.

• Stress-strain curve is different for different
materials.

2.5 Elastic Hysteresis 
• The strain persists even when the stress is removed.

This lagging behind of strain is called elastic hysteresis.
This is the reason why the values of strain for same
stress are different while increasing the load and while
decreasing the load.

Fig. 10.3 
• Brittle material

The plastic region between E and C is small for brittle 
material and it will break soon after the elastic limit is 
crossed. 

• Ductile material
The material of the wire have a good plastic range and
such materials can be easily changed into different
shaped and can be drawn into this wires.

• Elastomers
Stress strain curve is not a straight line within the elastic
limit for elastomers and strain produced is much larger
than the stress applied. Such materials have no plastic
range and the breaking point lies very close to elastic
limit, eg, rubber.

3. Moduli of Elasticity
• Young’s Modulus It is the ratio of longitudinal stress

to the corresponding strain for small change in length

and it is expressed as FLY
A

=


.

where,  
A = area of the body 

= change in the length due to the strain and
L = Natural length of the body.

• Bulk Modulus It is the ratio of volume stress to the
corresponding volume strain in the material for small
value of strain and it is given by

F / A VdPB
V / V dV

= = −
−∆

.

where, dP = change in pressure 
&        dV = change in volume

( )
1 dVCompressibility

Bulk modulus B VdP
−

= =

Gases can have following types of bulk modulus 
a) Isothermal Bulk Modulus : Under isothermal

condition, Bulk modulus is equal to pressure of gas,
i.e., iB P= (pressure of gas). 

b) Adiabatic Bulk Modulus : Under adiabatic condition,
Bulk modulus is equal to γ times pressure, i.e.,

P
a

V

CB P
C

 
= γ γ = 

 
. 

where, γ = heat capacity ratio. 

Also, a iB B= γ . 

• Modulus of Rigidity : It is the ratio of shearing stress
to the shearing strain for small strain in a body, which

is given as : FG
A

=
θ

, where, θ = shearing angle.

NOTE: 
• Young’s modulus and modulus of rigidity are defined

for solids only while Bulk modulus is defined for all
solids, liquids and gases.

• For perfectly rigid body, we have
Y ,B and G= ∞ = ∞ = ∞ .
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3.1 Stress, Strain & Various Elastic Moduli  
 

Types of Stress Stress Strain 
Modulus 

of 
Elasticity 

Name of 
Modulus 

State 
of 

Matter 
Longitudinal (Tensile or compressive) 

 
Fig. 10.4 

Two equal 
and opposite 
forces 
perpendicular 
to opposite 
faces 
( )F / Aσ = . 

Elongation 
or 
compression 
( )L / L∆ . 

FLY
A L

=
∆

 Young’s 
Modulus  

Solid 

Shearing 

 
Fig. 10.5 

Two equal 
and opposite 
forces parallel 
to opposite 
surfaces 
( )F / Aσ = . 

xtan
L

∆
θ =  FLG

A x
=

∆
 Shear 

Modulus 
Solid 

Hydraulic/Volume 

 
Fig. 10.6 

Forces 
perpendicular 
everywhere to 
the surface, 
force per unit 
area 
(pressure) 
same 
everywhere. 

Volume 
change
( )V / V∆  

PVB
V

−
=

∆
 Bulk 

Modulus 

Solid, 
liquid 
and gas. 

3.2 Poisson’s Ratio 
When a rod or bar is subjected to a longitudinal stress, not 
only its length changed but its transverse dimensions also 
change and thus giving rise to transverse or lateral strain in 
additional to longitudinal strain.  

Fig. 10.7 
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Transverse or lateral strain is b
b

∆ . 

The ratio of transverse to longitudinal strain is termed as 
Poisson’s ratio, σ . 

b / b
/

−∆
σ =

∆ 
. 

Since, Transverse strain
Longitudinal strain

σ = . 

Negative sign is introduced to make σ  positive quantity. 
Since, an increase in length always results in decrease of 
transverse dimensions and vice-versa. 
 
NOTE: 
• σ has no units, as it’s a ratio. 
• 0 0.5< σ ≤ . [For Most Materials] 

 

3.3 Derivation for Relations Between 
Elastic Constants  

Individually Young’s Modulus, Bulk Modulus and Modulus 
of Rigidity are related as- 
 

Relations Formula SI units 
The relation between 
modulus of elasticity 
and modulus of rigidity. 

( )Y 2G 1= + σ  N/m2 or pascal 
(Pa) 

The relation between 
Young’s modulus and 
bulk modulus. 

( )Y 3B 1 2= − σ  N/m2 or pascal 
(Pa) 

Relation between 
Young’s Modulus and 
Bulk Modulus B and 
Modulus of rigidity as. 
 

9BGE
G 3B

=
+

 No unit 

 
Where, 
• B is Bulk modulus. 
• G is shear modulus or modulus of rigidity. 
• Y is Young’s modulus or modulus of Elasticity. 
 

3.4  Applications of Modulus of 
Elasticity 

• If a beam is fixed at its ends and loaded with weight at 
its middle, then depression at the centre is given as 

3

3

Mg
4bd Y

δ =
   

where,  

Y = Young’s modulus, = length of beam,  
b = breadth of bean and d = thickness of beam 

 
Fig. 10.8 

• If a rubber ball of volume V is taken to a depth h in 
water, then decrease in its volume is given as 

ndgVdV
B

−
= . 

Where B is Bulk modulus. 
 

3.5  Factors Affecting Elasticity 
Elasticity of any material is affected due to many factors as 
given below:  
• Due to hammering and rolling, the elasticity of 

material increases. 
• Due to annealing (heating and slow cooling), the 

elasticity of material decreases. 
• With rise in temperature for almost all materials the 

elasticity decreases. 
• Due to impurity, the elasticity can be increased or 

decreased. 
 

4. Elastic Potential Energy 
• When an elastic body is deformed, work is done by the 

applied force. This work is stored as elastic potential 
energy and is released when the body returns back to 
its original size. 
Elastic energy stored per unit volume, 

( )( )1 stress strain
2

=  

( )( )21 modulus of elasticity strain
2

=  

( )2stress1
2 modulus of elasticity

= . 

• In case of longitudinal stress (compressive or tensile) 
2Energy stored 1 Y

Volume 2
∆ =  

 





 

Total energy   ( )21 YA 1 F
2 2

= ⋅ ∆ = ∆ 


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5. Miscellaneous Cases in 
Elasticity 

 

5.1 Determination of Young's Modulus 
by Searle's Method 

Consider a wire of length L and diameter d. Let its length L 
increases by an amount when the wire is pulled by a 
longitudinal external force F. Young’s modulus of the 
material of the wire is the ratio of longitudinal stress to the 

longitudinal strain i.e., 2

F / A 4FLY
/ L d

= =
π 

. 

The units of Young’s modulus are the same as that of stress 
(note that strain is dimensionless) which is same as the units 
of pressure i.e., Pa or N/m2. 

 
Wire Extension Due to Pulling force F k= θ  

Fig. 10.9 
 

• As Young’s modulus is independent of the shape of 
the material, we can utilize any shape for its 
calculation. in particular, a thin circular wire fulfills 
our requirement.  

• In this method, the length L of the wire is measured by 
a scale, diameter d of the wire is measured by a screw 
gauge, length  of the wire is measured by a 
Micrometer or Vernier scale, and F is specified 
external force.  

• Differentiate the expression for Y to get the relative 
error in the measured value of Y

Y L d2
Y L d

∆ ∆ ∆ ∆
= + +





 

where, L, d and∆ ∆ ∆ are the errors in the 

measurement of L, d and  , respectively. Generally, 
accuracy of these errors measurements depends on the 
least count of the measuring instruments. 

 

5.2 Thermal Stress & Strain 
• The strain and stress produced by heating a material is 

called the thermal strain and stress, respectively which 
are gives as  

Thermal strain [ ]t As, t 1∆
= = ∆ α∆ <<




 

where, α = thermal coefficient of linear expansion 
and     t∆  = change in temperature. 

Thermal stress F Y t
A

= = α∆ . 

 
• If a metal cube is heated, then pressure applied on the 

cube to prevent its expansion is  
VP B dt= γ  

where, Vγ = coefficient of volume expansion 
and       dt = rise in temperature. 

 

5.3 Stress Developed due to Rotation of 
Objects : Torsion Constant of a 
Wire 

The torsion constant is a geometrical property of a bar's 
cross-section which is involved in the relationship between 
angle of twist and applied torque along the axis of the bar, 
for a homogeneous linear-elastic bar. The torsion constant, 
together with material properties and length, describes a 
bar's torsional stiffness.  
For a beam of uniform cross-section along its length 

TL
GJ

θ =  

Where, 
θ is the angle of twist in radians 
T is applied torque 
L is the beam length 
G is the Modulus of rigidity (shear modulus) of the material 
J is the torsional constant 
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Fig. 10.1 

• The SI unit for torsion constant is m4. 
• Inverting the previous relation, we can define two 

quantities: the torsional rigidity TLGJ =
θ

with SI units 

Nm2/rad 
• And the torsional stiffness: 

GJ T
L

=
θ

with SI units N.m/rad. 

 

5.4 Interatomic Force Constant 
• It is the ratio of interatomic force to that of change in 

interatomic distance, i.e., Fk
r

=
∆

. 

Also, 0k Yr=  
where, Y = Young’s Modulus,  
           0r = distance between two atoms. 
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NCERT Corner 
(Some important points to remember)

1. Elastic and Plastic behavior of Materials
• Whenever a force is applied on a body, then it tends to

change the size or shape of the body.
• The property of a body by virtue of which it tends to

regain its original size and shape when the applied force
is removed, is known as Elasticity and the deformation
caused is known as Elastic Deformation.

• Those substances which do not have a tendency to
regain their shape and hence gets permanently
deformed are called Plastic and the property is called
Plasticity.

2. Stress
• The restoring force per unit cross-sectional are set up

within the body is called stress.
Restoring force FStress

Area of cross-section A
= =

• In SI system, unit of stress is N/m2 or pascal (Pa).
• In general there are three types of stresses

(a) Longitudinal Stress – Tensile stress (associated with
stretching or compressive stress (associated with
compression).

(b) Shearing Stress.
(c) Bulk Stress.

3. Breaking Stress
• The minimum stress after which the wire breaks is

called breaking stress.
• A wire of length   will break due to its own weight,

when Breaking stress
dg

=

where, d = density of material of wire
and      g = acceleration due to gravity.

4. Strain
• Strain is defined as the ratio of change in dimension of

an object to the original dimension.
Change in configuration of the objectStrain
Original configuration of the object

=

• It is a pure number and has no unit.

5. Hooke’s Law
• This law states that, for small deformations, the stress

and strain are proportional to each other.

Thus, stress strain∝

 stress k strain= ×

• The SI unit of modulus of elasticity is Nm-2.
• A class of solids called elastomers do not obey Hooke’s

law.

6. Moduli of Elasticity
• Three elastic moduli viz. Young’s Modulus, shear

modulus and bulk modulus are used to describe the
elastic behavior of objects as they respond to deforming
forces that act on them.

• When an object is under tension or compression, the
Hooke’s law takes the form:
F / A Y L / L= ∆

where L / L∆  is the tensile or compressive strain of the
object, F is the magnitude of the applied fore causing
the strain. A is the cross-sectional area over which F is
applied (perpendicular to A) and Y is the Young’s
modulus for the object.

• A pair of forces when applied parallel to the upper and
lower faces, the solid deforms so that the upper face
moves sideways with respect to the lower. The
horizontal displacement L∆ of the upper face is
perpendicular to the vertical height L. This type of
deformation is called shear and the corresponding stress
is the shearing stress. This type of stress is possible only
in solids.
In this kind of deformation the Hooke’s law takes the
form :
F / A G L / L= × ∆  where L∆  is the displacement of
one end of object in the direction of the applied force F,
and G is the shear modulus.

• When an object undergoes hydraulic compression due
to a stress exerted by a surrounding fluid, the Hooke’s
law takes the form ( )P B V / V= − ∆ . where p is the

pressure (hydraulic stress) on the object due to the fluid,
V / V∆  (the volume strain) is the absolute fractional

change in the object’s volume due to that pressure and
B is the bulk modulus of the object.

• The Young’s modulus and shear modulus are relevant
only for solids since only solids have lengths and
shapes.

• Bulk modulus is relevant for solids, liquid and gases. it
refers to the change in volume when every part of the
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body is under the uniform stress so that the shape of the 
body remains unchanged. 

• Metal shave larger values of Young’s modulus than
alloys and elastomers. A material with large value of
Young’s modulus require a large force to produce small
changes in its length.

7. Poisson’s Ratio
• It is the ratio of transverse or lateral strain to

longitudinal strain in the direction of stretching force. It
is expressed as

-Lateral contraction strain d / D
Longitudinal contraction strain / L

−
σ = =



where, d = change in diameter & D = original diameter, 
=  change in length   &  L = original length.

• Theoretical limits of Poisson’s ratio are -1 and 0.5,
while the practical limits are 0 and 0.5.

• Relation between Y,K,G and σ  as given below

(a) 
( )

YL
3 1 2

=
− σ

(b) 
( )

YG
2 1

=
+ σ

(c) ( )
( )
3B 2G

2 3B G
−

σ =
+

(d) 9GBY
3B G

=
+

(e) 9 3 1
Y G B

= +

8. Stress-strain Curve
• A typical stress-strain curve for a metal is shown in

figure

• In the region O to A, stress is found proportional to
strain. Thus, Hooke’s law is fully obeyed in this region
and body regain its original shape.

• Point A is known as point of proportional limit.
• In the region from A to B, stress and strain are not

proportional, but the body still returns to its original
shape and size.

• The point B is yield point (also called elastic limit) and
corresponding stress is yield stress ( yσ ). 

• If stress increases beyond point B, the strain further
increases, but on removing the strain wire does not
regain its original length.

• Beyond point C, for a small stress, the strain produced
is large upto point D. The wire will break at point D 
called fracture point of wire.  

9. Elastic Potential energy Stored in a Stretched Wire
• The work done in stretching a wire against the

interatomic forces is stored as the elastic potential
energy.

• Potential energy of work done per unit is given by
W 1U Stress Strain
V 2

= = × ×

    ( ) ( )2 21 1 StressY Strain Stress Y
2 2Y Strain

 = × × = × =  


• Potential energy stored in stretching wire by restoring
force is expressed as

1W F
2

= × ×

where, F = restoring force 
and      =  elongation produced. 

• If the force acting on the body is increased from F1 to F2

within the elastic limit, then
( )1 2F F

W extension
2
+

= × . 
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Fluid Mechanics 

1. Introduction to Fluids
• The liquids and gases together are termed as fluids, in

other words, we can say that the substances which can
flow are termed as fluids.

• We assume fluid to be incompressible (i.e., the density
of liquid is independent of variation in pressure and
remains constant) and non-viscous (i.e. the two liquid
surfaces in contact are not exerting any tangential force
on each other).

1.1 Fluid Pressure 
Pressure p at any point is defined as the normal force per 
unit area.  

1dFP
dA

=

Fig. 11.1 
The SI unit of pressure is the Pascal and 1 Pascal = 1 N/m2 
• Fluid force acts perpendicular to any surface in the

fluid, no matter how that surface is oriented. Hence
pressure, has no intrinsic direction of its own, it is a
scalar quantity.

1.2 Relative Density and Specific 
      Gravity 

Relative density or specific gravity is the ratio of the 
density (mass of a unit volume) of a substance to the 
density of a given reference material. If the relative density 
is exactly 1 then the densities are equal i.e., equal 
volumes of the two substances have the same mass. 

subs tan ce

reference

RD


=


2. Hydrostatic Pressure
2.1 Variation of Pressure
(a) Pressure at two points in a horizontal plane or at

same level when the fluid is at rest or moving with
constant velocity is same.

Fig.11.2 

(b) Pressure at two points which are at a depth separation
of h when fluid is at rest or moving with constant
velocity is related by the expression

Fig. 11.3 

2 1p p gh− =  , where  is the density of liquid. 

(c) Pressure at two points in a horizontal plane when
fluid container is having some constant horizontal
acceleration are related by the expression

Fig.11.4 
 2 1p p la− = 

and atan
g

 = , where  is the angle which the 

liquid’s free surface is making with horizontal. 

2.2 Atmospheric Pressure, Gauge 
      Pressure and Absolute Pressure
• Atmospheric Pressure: It is the pressure exerted by

earth’s atmosphere. Normal atmospheric pressure at sea
level (an average value) is 1 atmosphere (atm) that is
equal to 1.013 × 105 Pa.

• Gauge Pressure: It is the difference between absolute
pressure and atmospheric pressure. If the gauge
pressure is above the atmospheric pressure, it is
positive. If the gauge pressure is below the atmospheric
pressure, it is negative.
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• Absolute Pressure: Absolute pressure is gauge
pressure plus atmospheric pressure. An absolute
pressure reading of zero can only be achieved in a
perfect vacuum and only naturally occurs in outer
space.

• Barometer: It is a device used to measure atmospheric
pressure while U–tube manometer or simply manometer
is a device used to measure the gauge pressure.

3. Force Exerted by Fluids
on the Walls of the
Container

3.1 Force on the Sidewall of a Container 
Force on the side wall of the container cannot be directly 
determined as at different depths pressures are different. 
To find this we consider a strip of width dx at a depth x 
from the surface of the liquid as shown in figure, 

Fig.11.5 

 On this strip the force due to the liquid is given as: 
x

h

0
2

dF P A
dF gx(bdx)

F dF gb xdx

gbhF
2

=
= 

= = 


=

 

This force is acting in the direction normal to the side wall. 

3.2 Average Pressure on the Sidewall: 

The absolute pressure on the side wall cannot be evaluated 
because at different depths on this wall pressure is different. 
The average pressure on the wall can be given as: 

avg

avg

FP
bh

ghP
2

=


==

Above equation shows that the average pressure on side 
vertical wall is half of the net pressure at the bottom of the 
container. 

4. Pascal’s Law
• A change in the pressure applied to an enclosed fluid

is transmitted equally to every portion of the fluid in
all direction of the walls of the containing vessel.
Hydraulic lift: Hydraulic lift is a practical
applications of Pascal’s law

• 

Fig. 11.6 

According to principle of hydraulics 
1 2 2

1 2 2 1
1 2 1

F F AP P F F
A A A

=  =  =

5. Buoyancy
Buoyancy is the tendency of an object to float in a fluid. 
All liquids and gases in the presence of gravity exert an 
upward force known as the buoyant force on any object 
immersed in them. Buoyancy results from the differences 
in pressure acting on opposite sides of an object immersed 
in a static fluid. 

5.1 Buoyant Force 
The buoyant force is the upward force exerted on an object 
wholly or partly immersed in a fluid. This upward force is 
also called Upthrust. Due to the buoyant force, a body 
submerged partially or fully in a fluid appears to lose its 
weight, i.e.. appears to be lighter. 
Following factors affect buoyant force: 
(i)the density of the fluid
(ii)the volume of the fluid displaced
(iii)the local acceleration due to gravity
An object whose density is greater than that of the fluid
in which it is submerged tends to sink. If the object is
either less dense than the liquid or is shaped appropriately
(as in a boat), the force can keep the object afloat.

5.2 Archimedes’ Principle 
Archimedes’ principle states that: 
“The upward buoyant force that is exerted on a body 
immersed in a fluid, whether partially or fully submerged, is 
equal to the weight of the fluid that the body displaces and 
acts in the upward direction at the center of mass of the 
displaced fluid”. 

BF V g=   
Where, FB=Upthrust of Buoyant force 
V = volume of liquid displaced 
 =  density of liquid. 
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Apparent decrease in weight of body = Upthrust – weight of 
liquid displaced by the body 
Wapp = FB – W 

 

6.  Types of Fluid Flows 
6.1 Steady Flow (Streamline Flow) 
When a body is partially or fully dipped into a fluid, the 
fluid exerts contact force on the body. The resultant of all 
these contact forces is called buoyant force (upthrust). 
Line of flow: It is the path taken by a particle in flowing 
liquid. In case of a steady flow, it is called streamline. Two 
streamlines can never intersect each other. 

 
6.2 Turbulent Flow 
It is irregular flow in which particles move in zig zag way 
 
6.3 Reynold’s Number 
Reynolds defined a dimensionless number whose value 
gives one an approximate idea, whether the flow rate would 
be turbulent or laminar. 
This number, called the Reynolds number Re is defined as,

e
vDR 

=


 

where,  = the density of the fluid flowing with a speed v.  
D = the diameter of the tube.  
 = the coefficient of viscosity of the fluid. 

It is found that flow is streamline or laminar for Re less than 
1000. The flow is turbulent for Re > 2000. The flow 
becomes unsteady for Re between 1000 and 2000. 

NOTE:  
For lower density and higher viscosity fluids laminar 
flow is more probable. 

 

7.  Equation of Continuity 
In a tube of varying cross section as shown in diagram: 

 
Fig. 11.7 

The fluid flows for a short interval of time in the tube. So, 
assume that short interval of time as Δt. In this time t, the 
volume of liquid entering the tube of flow in a steady flow is 
A1 v1 t.  
Where v1 is velocity of fluid at cross section A1 
The same volume must flow out as the liquid is 
incompressible. The volume flowing out in t is A2 v2 t. 
Where v2 is velocity of fluid at cross section A2 

Now from conservation of mass 
A1 v1 t = A2 v2t 
 A1 v1 = A2 v2 
This equation is known as continuity equation 
• Mass flows rate = Av  

(Where  is the density of the liquid.) 
 

8.  Bernoulli’s Theorem 
In a streamline flow of an ideal fluid, the sum of pressure 
energy per unit volume, potential energy per unit volume 
and kinetic energy per unit volume is always constant at all 
cross section of the liquid. 

2vP gh Constant
2


+  + =  

• It is a mathematical consequence of low of 
conservation of energy and fluid dynamics. 

 
Fig. 11.8 

2 2
1 2

1 1 2 2
v vP gh P gh
2 2

 
+  + = +  +  

• Bernoulli’s equation is valid only for incompressible 
steady flow of a fluid with no viscosity. 
 

8.1 Application of Bernoulli’s Theorem 
(a) Velocity of Efflux 

 
Fig. 11.9 

Let us find the velocity with which liquid comes out 
of a hole at a depth h below the liquid surface. Using 
Bernoulli’s theorem, 

2 2
A A A B B B

1 1P v gh P v gh
2 2

+  +  = +  +   

2 2
atm A atm

1 1P v gh P v 0
2 2

 +  +  = +  +  

[PB = Patm, because we have opened the liquid to 
atmosphere] 

2 2
Av v 2gh = +  

Using equation of continuity 
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AvA = av  
A: area of cross-section of vessel, a: area of hole 

2
2 2

2

av v 2gh
A

 = +  

2

2

2gh
v

a1
A

 =

−

  

If the hole is very small 
v 2gh   

(b) Venturi Meter 
Venturi meter is an instrument for measuring the rate 
of flow of fluids. 

 
Fig. 11.10 

 
If PA is pressure at A and PB is pressure at B,  
PA – PB = hg 
[h : difference of heights of liquids of density  in 
vertical tubes]  
If v1 is velocity at A and v2 is velocity at B 

1 1 2 2Q a v a v= =           [equation of continuity] 
2 2
1 2

A B
v vP P
2 2

+  = +   [Bernoulli’s Theorem] 

( )2 2
2 1 A B

2 2v v P P h g − = − = 
 

 

2 2

2 2
2 1

Q Q 2gh
a a

 − =  

1 2 2 2
1 2

2ghQ a a
a a

 =
−

 

Here Q is the rate of fluid flow 
 

9.  Viscosity 
The property of a fluid by virtue of which it opposes the 
relative motion between its different layers is known as 
viscosity and the force that is into play is called the viscous 
force.  
Newton’s Law of Viscosity: According to Newton, the 
frictional force F (or viscous force) between two layers 
depends upon the following factors, 
(i)  Force F is directly proportional to the area (A) of the 

layers in contact, i.e. F A  

(ii)  Force F is directly proportional to the velocity 

gradient dv
dx

 between the layers.  

 Combining these two, we have viscous force
dvF A
dx

= −  

Where  is a constant depending upon the nature of the 
liquid and is called the coefficient of viscosity. Its value 
depends on the nature of the fluid.  
The negative sign in the above equation shows that the 
direction of viscous force F is opposite to the direction of 
relative velocity of the layer. 
S.I. unit of coefficient of viscosity is Pa-s or N-s/m2 or 
decapoise.  
CGS unit of viscosity is poise. (1 decapoise = 10 poise). 
 
9.1  Stoke’s Law  
When a solid moves through a viscous medium, its motion 
is opposed by a viscous force depending on the velocity and 
shape and size of the body. 
The viscous drag on a spherical body of radius r, moving 
with velocity v, in a viscous medium of viscosity  is given 
by 

viscousF 6 r v=    
This relation is called Stoke’s law. 
 
Importance of Stoke’s Law 
• This law is used in the determination of electronic 

charge with the help of Millikan’s experiment. 
• This law accounts the formation of clouds. 
• This law accounts why the speed of raindrops is less 

than that of a body falling freely with a constant 
velocity from the height of clouds. 

• This law helps a man coming down with the help of a 
parachute. 
 

9.2 Terminal Velocity  
It is maximum constant velocity acquired by the body while 
falling freely in a viscous medium. 

( )2

r

2r g
v

9
 − 

=


 

Where r is radius of body,  is density of body,   is density 
of liquid and  is the coefficient of viscosity. 
 
9.3 Poiseuille’s Formula 
 
This law states that the flow of liquid depends on variables 
such as length of tube (L) radius(r), pressure difference (P) 
and coefficient of viscosity . 
According to this law volume of liquid coming out of tube 
per second in given by 

4PrV
8 L


=

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10.  Surface Tension 
The surface tension of a liquid is defined as the force per 
unit length in the plane of the liquid surface at right angles 
to either side of an imaginary line drawn on that surface. 

So, FS = where S = surface tension of liquid 

The surface tension can be defined as the property of a 
liquid at rest by virtue of which its free surface behaves like 
a stretched membrane under tension and tries to occupy 
as small area as possible. 
Unit of surface tension in MKS system : N/m, J/m2  
CGS system   Dyne/cm, erg/cm 
 
10.1 Surface Energy 
In order to increase the surface area, the work has to be done 
over the surface of the liquid. This work done is stored in 
the liquid surface as its potential energy. Hence the surface 
energy of a liquid can be defined as the excess potential 
energy per unit area of the liquid surface. 
W = SA, where A = increase in surface area. 
 

NOTE:  
1. Work done in formation of drop of radius r = 

surface tension × A = 4r2S 
2. Work done in formation of soap bubble = 2 × 

surface tension × A = 8r2S 

 
10.2 Excess Pressure 
• Excess pressure in a liquid drop or bubble in a liquid 

is 2SP ,
R

= S is surface tension 

• Excess pressure in a soap bubble is 4SP
R

=  

(Because it has two free surfaces) 

11.  Cohesive and Adhesive  
      Forces 
The force of attraction between the molecules of the same 
substance is called cohesion. 
For solids, the force of cohesion is very large and due to this 
solids have definite shape and size. 
But in case of liquids, the force of cohesion is weaker than 
that of solids. Hence, liquids do not have definite shape but 
have definite volume. The force of cohesion is negligible in 
for gases so, gases don’t have fixed shape and volume. 
Some Important points: 
(i)  Adhesive force enables us to write on the black board 

with a chalk. 

(ii)  Due to force of adhesion, water wets the glass plate. 

11.1 Angle of Contact 
When a liquid surface touches a solid surface, the shape of 
the liquid surface near the contact is generally curved. 
The angle between the tangent planes at the solid surface 
and the liquid at the contact is called the contact angle. 
 
11.2 Shape of Liquid Meniscus 
Concave upwards: When adhesive force between solid and 
liquid molecules is more than the cohesive force between 
liquid-liquid molecules in this case liquids wet the walls of 
the container (For example water and glass) have meniscus 
concave upwards and their values of angle of contact is less 
than 90°.  
Convex upwards: When adhesive force between solid and 
liquid molecules is less than the cohesive force between 
liquid-liquid molecules in this case liquids don't wet the 
walls of the container (For example mercury and glass) and 
have meniscus convex upwards and their value of angle of 
contact is greater than 90°. 
 

 
Fig. 11.11 

 
11.3 Capillary Tube and Capillarity  
        Action 
A very narrow glass tube with fine bore and open at both 
ends is known as capillary tube. When a capillary tube in 
dipped in a liquid, then liquid will rise or fall in the tube, 
this action is termed as capillarity. 

 
Fig. 11.12 

2Scos 2Sh
r g R g


= =

 
 

where, S = surface tension,  
 = angle of contact,  
r = radius of capillary tube,  
R = radius of meniscus, and  
 = density of liquid. 

• Capillary rise in a tube of insufficient length : 
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If the actual height to which a liquid will rise in a 
capillary tube is ‘h’ then a capillary tube of length 
less than ‘h’ can be called a tube of “insufficient 
length”. 
In such a case, liquid rises to the top of the capillary 
tube of length l (l < h) and adjusts the radius of 
curvature of its meniscus until the excess pressure is 
equalized by the pressure of liquid column of length l. 
(Note liquid does not overflow). 

2 g
r '


 =          …(i) 

If r were the actual radius of curvature, 
2 h g
r


 =        …(ii) 

Comparing (i) and (ii) 
 

 
Fig. 11.13 

2 r ' hr
g


= =


 

hrr ' =  i.e. radius of curvature r’ can be calculated. 

 

 
 

11.3 Important Points to Remember 
 

 
Adhesion > Cohesion 

 
Adhesion = Cohesion 

 
Adhesion < Cohesion 

 
1. Liquid will wet the solid 
2. Meniscus is concave. 

3. Angle of contact is acute ( < 90°). 
4. Pressure below the meniscus is lesser 
than above it by (2T/r),  

i.e. 0
2TP P .
r

= −  

 
5. In capillary there will be rise 

1. Critical 
2. Meniscus is plane.  
3.Angle of contact is 90° 
4. Pressure below the meniscus is 
same as above it, 
i.e. P = P0 
 
 
5. No capillarity 

1. Liquid will not wet the solid. 
2. Meniscus is convex. 
3. Angle of contact is obtuse ( > 
90°) 
4. Pressure below the meniscus  
more then above it by (2T/r),  

i.e, 0
2TP P .
r

= +  

5. In capillary there will be fall 
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NCERT Corner 
1. The basic property of a fluid is that it can flow. The 

fluid does not have any resistance to change of its 
shape. Thus, the shape of a fluid is governed by the 
shape of its container 

 

2. A liquid is incompressible and has a free surface of its 
own. A gas is compressible, and it expands to occupy 
all the space available to it. 

 

3. If F is the normal force exerted by a fluid on an area A 
then the average pressure Pav is defined as the ratio of 
the force to area 

 av
FP
A

=  

 

4. The unit of the pressure is the pascal (Pa). It is the 
same as N m-2. Other common units of pressure are 

 1 atm = 1.01×105 Pa  

 1 bar = 105 Pa 1 torr = 133 Pa = 0.133 kPa  

 1 mm of Hg = 1 torr = 133 Pa 

 

5. Pascal’s law states that: Pressure in a fluid at rest is 
same at all points which are at the same height. A 
change in pressure applied to an enclosed fluid is 
transmitted undiminished to every point of the fluid 
and the walls of the containing vessel. 

 

6. The pressure in a fluid varies with depth h according 
to the expression  

 P = P0 + ρgh  

 where ρ is the density of the fluid, assumed uniform. 

 

7. The volume of an incompressible fluid passing any 
point every second in a pipe of non-uniform cross 
section is the same in the steady flow. 

 vA = constant ( v is the velocity and A is the area of 
cross section) 

 The equation is due to mass conservation in 
incompressible fluid flow. 

 

  

8. Bernoulli’s principle states that as we move along a 
streamline, the sum of the pressure (P), the kinetic 
energy per unit volume (ρv2/2) and the potential 
energy per unit volume (ρgh) remains a constant. 

 P + ρv2/2 + ρgh = constant 

 The equation is basically the conservation of energy 
applied to non viscuss fluid motion in steady state. 
There is no fluid which have zero viscosity, so the 
above statement is true only approximately. The 
viscosity is like friction and converts the kinetic 
energy to heat energy. 

 

9. Though shear strain in a fluid does not require shear 
stress, when a shear stress is applied to a fluid, the 
motion is generated which causes a shear strain 
growing with time. The ratio of the shear stress to the 
time rate of shearing strain is known as coefficient of 
viscosity, η.  

  

10. Stokes’ law states that the viscous drag force F on a 
sphere of radius r moving with velocity v through a 
fluid of viscosity is, F = 6πrηv. 

 

11. Surface tension is a force per unit length (or surface 
energy per unit area) acting in the plane of interface 
between the liquid and the bounding surface. It is the 
extra energy that the molecules at the interface have as 
compared to the interior. 
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1 

Simple Harmonic Motion
 

1.   Periodic & Oscillatory 
Motion 

• A motion which repeats itself over and over again after 
a regular interval of time is called periodic motion. 
 

• Oscillatory or vibratory motion is that motion in which 
a body moves to and fro or back and forth repeatedly 
about a fixed point in a definite interval of time. 

 
Fig. 12.1 

The above two are the examples of both oscillatory 
and periodic motions. 

 

2. Simple Harmonic Motion 

Simple harmonic motion is a specific type of 
oscillatory motion, in which: 
• particle moves in one dimension, 
• particle moves to and fro about a fixed mean 

position (where netF 0= ), 

• net force on the particle is always directed towards 
mean position, and 

• magnitude of net force is always proportional to the 
displacement of particle from the mean position at that 
instant. 

 
Fig. 12.2 

 

2.1 Restoring Force in SHM 
Simple Harmonic Motion (SHM) is that type of oscillatory 
motion in which the particle moves to and fro about a fixed 
point under a restoring force whose magnitude is directly 
proportional to its displacement and directed towards means 
position, i.e. 
F x∝ −  
So, netF kx= −  
where, k is known as force constant 
Also, ma kx= −  

( )2

ka x
m

or, a x ... i

−
⇒ =

= −ω
 

where, ω  is known as angular frequency. 
 

2.2 Equation of SHM 
From (i), we can write 

2
2

2
d x x
dt

= −ω  

This equation is called as the differential equation of S.H.M. 
The general expression for x(t) satisfying the above equation 
is: 

( ) ( )x t Asin t= ω + φ . 

Mathematically a SHM can be expressed as 
2x Asin t Asin t
T
π

= ω =  

or, 2x A cos t A cos t
T
π

= ω =  

where,  
x = displacement from mean position at time t, 
A = amplitude or maximum displacement, 
ω = angular frequency, and 
T = time period. 
φ = initial phase. 
 

2.3 Some Important Terms 
a) Amplitude 

The amplitude of particle executing S.H.M. is its 
magnitude of maximum displacement on either side of 
the means position. 
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b) Time period 
Time period of a particle executing S.H.M. is the time 
taken to complete one cycle and is denoted by T. 

Time period ( ) 2 m mT 2 as
k k

 π
= = π ω =  ω  

. 

c) Frequency 
The frequency of a particle executing S.H.M. is equal 
to the number of oscillations completed in one second. 

1 k
2 2 m
ω

υ = =
π π

 

d) Phase 
The phase of particle executing S.H.M. at any instant 
is its state as regard to its position and direction of 
motion at that instant. It is measured as argument 
(angle) of sine in the equation of S.H.M. 
Phase ( )t= ω + φ  

• At t = 0, phase = φ ; the constant φ is called initial 
phase of the particle or phase constant. 

 

2.4 Important Relations 
 

a) Position (For 2nφ = π ) 

 
Fig. 12.3 

If mean position is at origin the position (X coordinate 
depends on time in general as: 

( ) ( )x t sin t= ω + φ  

• At mean position, x = 0 
• At extremes, x A= ± . 

 
b) Velocity (For 2nφ = π ) 

 
Fig. 12.4 

• At any time instant t, ( ) ( )v t A cos t= ω ω + φ . 

• At any position x, ( ) 2 2v x A x= ±ω − . 

• Velocity is minimum at extremes because the 
particles is at rest. i.e., v = 0 at extreme position. 

• Velocity has maximum magnitude at mean 
position. maxv A= ω at mean position. 

 
c) Acceleration (For 2nφ = π ) 

 
Fig. 12.5 

• At any instant t, ( ) ( )2a t Asin t= −ω ω + φ . 

• At any position x, ( ) 2a x x= −ω . 

• Acceleration is always directed towards mean 
position. 

• The magnitude of acceleration is minimum at mean 
position and maximum at extremes. 

i.e., mina 0= at mean position. 
2

maxa = ω A at extremes 

 

2.5 Time Period of S.H.M. 
To find whether a motion in S.H.M. or not and to find its 
time period, follow these steps: 
a) Locate the mean (equilibrium) position mathematically 

by balancing all the forces on it. 
b) Displace the particle by a displacement ‘x’ from the 

mean position in the probable direction of oscillation. 
c) Find the net force on it and check if it is towards mean 

position. 
d) Try to express net force as a proportional function of 

its displacement ‘x’. 
 

NOTE: 
If step c) and step d)  are proved, then it is a simple 
harmonic motion 

 
e) Find k from expression of net force ( )F kx= − and 

find time period using mT 2
k

= π . 
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2.6 Graphs in S.H.M. 
 

2.6.1 Displacement, Velocity and Acceleration 
of a Body Executing SHM 

 
a) Displacement ( )y t A cos t= ω  

 
Fig. 12.6 

It is Sinusoidal in nature, y varies from -A to A. It has 
zero phase difference. 
 

b) Velocity ( )v t Asin t= −ω ω  

 
Fig. 12.7 

It is Sinusoidal in nature, v(t) varies from A to A−ω ω

. It has a phase difference of 
2
π w.r.t. y(t). 

(It is leading y(t) in the phase by 
2
π .) 

c) Acceleration ( ) 2a t A cos t= −ω ω  

 
Fig. 12.8 

It is Sinusoidal in nature, a(t) varies from 
2 2A to A−ω ω . 

It has a phase difference of π w.r.t. y(t). 
(It is π phase ahead of y(t)) 

 
 
 

3. Phasor in S.H.M.’s 

3.1 SHM Projection for Circular Motion 
 

Uniform Circular Motion: 
a) Particle moves on a circular path of radius A with 

angular velocity ω . 

 
Fig. 12.9 

At t = 0, 
• Particle is at point Q on the circle 
• Position vector is OQ



. 
• Angle with X-axis = φ . 
b)  

 
Fig. 12.10 

At any given time t 
• Particle is at point P 
• Position vector OP



. 
• Angle with X-axis t= φ + ω . 

 ( )y Asin t∴ = ω + φ  

 So, its projection on y-axis does SHM. 
 

3.2 Phase in S.H.M. 
 

We can write an expression for the displacement of the mass 
as follows: 

( )x t A cos t= ω  

where, A is the amplitude of the oscillation, and ω is the 
angular frequency in units of rad/s.  
• That means that A is the value of largest deviation 

(plus or minus) of the mass from its equilibrium 
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position, and the value of ω governs the time it takes 
for the mass to complete one oscillation (recall that the 

period of the oscillation, 2T π
=

ω
,so a small ωmeans a 

long period while a large ω means a short period). 
• Together, A and ωcompletely define the oscillation.
• We can represent these two quantities and therefore

the oscillation itself with a phasor diagram. A phasor is
nothing more than a vector with magnitude is A that
rotates with angular velocity ω .

• For the oscillation defined above ( )x 0 A= , since

cos 0 1° = . We can represent the oscillation at this time
with a phasor of length A that lies on the horizontal
axis.

Fig. 12.11 
• As time passes, the mass moves back toward its

equilibrium position. At the same time, the phasor
rotates in the counterclockwise direction. The phasor’s
magnitude doesn’t change, but the projection of the
phasor onto the horizontal axis gets smaller.

Fig. 12.12 
• Now, if tθ = ω in the phasor diagram, then projection

of the phasor on the horizontal axis is
A cos A cos tθ = ω , and that’s precisely the expression
for the displacement of the mass at time t. This means
that if the phasor rotates with angular velocity ω , its
projection on the horizontal axis will always describe
the displacement of the oscillation.

Phasor Diagram: - 

Fig. 12.13 

NOTE: 
If particle start from 
• mean towards positive direction

0, x Asin tφ = = ω

• mean towards negative direction
( ), x Asin tφ = π = ω + π

• from positive extreme

, x Asin t
2 2
π π φ = = ω + 

 

( )x A cos t= ω

• negative extreme
3 3, x Asin t
2 2
π π φ = = ω + 

 
x A cos t= − ω . 

Fig. 12.14 
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4. Energy in S.H.M.
4.1 Kinetic Energy 
• 21K mv

2
=

( ) ( )2 2 2 2 21K m A x as v A x
2

⇒ = ω − = ω −

( )2 2 21 m A cos t
2

= ω ω + φ

Fig. 12.15 
• K is maximum at mean position and minimum at

extremes.

and: 2 2 2
max

1 1K m A kA
2 2

= ω = at mean position 

minK 0= at extremes. 

4.2 Potential Energy 
If potential energy is taken as zero at mean position, then at 
any position x,

( ) ( )2 2 2 21 1U x kx mA sin t
2 2

= = ω ω + φ

Fig. 12.16 

• U is maximum at extremes, 2
max

1U kA
2

= . 

• U is minimum at mean position

4.3 Total Energy 
T.E = K.E + P.E

Fig. 12.17 
2 2 21 1T.E. kA mA

2 2
= = ω

NOTE: 
It is constant at all time instant and at all positions. 

Fig. 12.18 Energy Position Graph 

5. Spring Block System

5.1 Horizontal Spring 
• Let a block of mass m be placed on a smooth

horizontal surface and rigidly connected to spring of
force constant K whose other end is permanently
fixed.

Fig. 12.19 

• Mean position: when spring is at its natural length.

• Time period: mT 2
k

= π . 

For 0φ = °

For 0φ = °
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5.2 Vertical Spring 
• If the spring is suspended vertically from a fixed point 

and carries the block at its other end as shown, the 
block will oscillate along the vertical line. 

 
Fig. 12.20 

• Mean position: spring is elongated by mgd
k

= . 

• Time period : mT 2
k

= π . 

5.3 Combination of Spring 
a) Spring in series 

When two spring of force constant K1 and K2 are 
connected in series as shown, they are equivalent to a 
single spring of force constant K, which is given by 

1 2

1 1 1
K K K

= +  

1 2

1 2

K KK
K K

=
+

 

 
Fig. 12.21 

b) Spring in parallel 
For a parallel combination as shown, the effective 
spring constant is 1 2K K K= +  

 

 
Fig. 12.22 

5.4 Important Points Regarding Spring 
Block System  

 

• If the length of the spring is made n times, then the 
effective force constant becomes 1/n times and the 
time period becomes n times. 

• If a spring of spring constant k is divided into n equal 
parts, then the spring constant of each part becomes nk 

and time period becomes 1
n

times. 

• The force constant of a stiffer spring is higher than that 
of soft spring. 

 

6. Angular S.H.M. 
Instead of straight-line motion, if a particle or centre of mass 
of body is oscillating on a small arc of circular path, then it 
is called angular S.H.M. 
For angular S.H.M., kτ = − θ  

I k⇒ α = − θ  

ITime period,T 2
k

⇒ = π . 

where I is the moment of inertia of the body along the given 
axis. 
 

6.1 Simple Pendulum 
• If a heavy point mass is suspended by a weightless, 

inextensible and perfectly flexible string from a rigid 
support, then this arrangement is called a simple 
pendulum 

 
Fig. 12.23 

• Time period : T 2
g

= π

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Special Cases: 
a) If reference system is lift 

• If velocity of lift v = constant, Acceleration a = 0 
and effg g=  

T 2
g

∴ = π
 . 

• If lift is moving upwards with acceleration a  

effg g a= +  

T 2 T decreases
g a

= π ⇒
+


. 

• If lift is moving downwards with acceleration a 

effg g a= −  

T 2 T decreases
g a

∴ = π ⇒
−


. 

• If lift falls downwards freely 

effg g g 0 T= − = ⇒ = ∞ . 
 

b) A simple pendulum is mounted on a moving truck 
• If truck is moving with constant velocity, no 

pseudo force acts on the pendulum and time period 

remains same T 2
g

= π


. 

• If truck accelerates with acceleration a, then a 
pseudo force acts in opposite direction. 
So effective acceleration, 

2 2
eff

eff
g g a & T ' 2

g
= + = π

  

Time period 
2 2

T ' 2 T ' decreases
g a

= π ⇒
+



. 

 
Fig. 12.24 

6.2 Physical Pendulum 
Consider a body of irregular shape and mass (m) is free to 
oscillate in a vertical plane about a horizontal axis passing 
through a point, weight mg acts downwards at the centre of 
gravity (C). 

 

 
Fig. 12.25 

If the body displaced through a small angle ' 'θ and released 
from this position a torque is exerted by the weight of the 
body to restore to its equilibrium, 

( )g gF sin d as F mg τ = − θ =   

mgdsinτ = − θ  

k mgd=  

( )hinge
hinge

I
T 2 I moment of inertia about hinge

k
= π =  

HingeI
T 2

mgd
⇒ = π  

 
6.2.1 Condition for Minimum Time period 

IT 2
mgd

= π  

2
cI I md= +  

2 2I mK md= +  
where I is Moment of inertia of the given body along the 
given axis of rotation. 
Ic is the moment of inertia of the given body along its centre 
of mass. 
K is radius of gyration. 

1/22 2
cImK mdT 2 as, K

mgd m
  +

= π =        
 

For minimum time period,  
d = K 
 

6.3 Torsional Pendulum 
A torsional pendulum consists of a disk (or some other 
object) suspended from a wire, which is then twisted and 
released, resulting in an oscillatory motion.  
• The oscillatory motion is caused by a restoring torque 

which is proportional to the angular displacement. 
2

R 2
dI
dt

θ
τ = = −κθ  
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where, I is the rotational inertia of the disk about the 
twisting axis. k (kappa) is the torsional constant 
(equivalent to the spring constant).  

• This equation is exactly the same as SHM we have 
already discussed.  

• By direct comparison the period of the torsional 
pendulum is given by. 

IT 2= π
κ

 

and we can write, ( ) ( )t A cos tθ = ω + φ    

 
Fig. 12.26 

• Similar to the simple pendulum, so long as the angular 
displacement is small (which means the motion in 
SHM) the period is independent of the displacement. 

• Torsional pendulums are also used as a time keeping 
devices, as in for example, the mechanical wristwatch. 

 

7. Miscellaneous Examples of 
S.H.M. 

 

7.1 Oscillation of a Cylinder Floating in 
a Liquid 

 

Let a cylinder of mass m and density d be floating on the 
surface of a liquid of density ρ . The total length of cylinder 
is L. 

 
Fig. 12.27 

• Mean position : cylinder is immersed upto Ld
=

ρ
 . 

• Time period :  
LdT 2 2

g g
= π = π

ρ


. 

 

7.2 Liquid Oscillating in a U-tube 
 

Consider a liquid column of mass m and density ρ  in a U-
tube of area of cross section A. Let L = 2H, 

 

 
Fig. 12.28 

• Mean position : when height of liquid is same in both 
limbs. 

• Time period :  

m 2L A LT 2 2 2
2A g 2A g 2g

⋅
= π = π = π

ρ ρ
  

where, L is length of liquid column. 
 

7.3 Body Oscillation in Tunnel Along 
Any Chord of the Earth 

 

 
Fig. 12.29 

• Mean position : At the centre of the chord. 
• Time period : 

 
RT 2 84.6minutes
g

= π =  

where, R is radius of earth = 6400 Km. 
 

7.4 Pulley Spring Block System 
 

A system is consisting of massless pulley, a spring of spring 
constant k and a block of mass m. If the block is slightly 
displaced vertically down from its equilibrium position and 
released. 

h 
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Let’s find the frequency of its vertical oscillation in given 
cases: 
Case (A): 
As the pulley is fixed and string in inextensible, if mass m is 
displaced by y the spring will stretch by y 
F = T = ky i.e.,  
restoring force is linear and so motion of mass m will be 
linear simple harmonic with frequency 

A
1 kf

2 m
=

π
 

 
Fig. 12.30 

Case (B): 
The pulley is moveable and string inextensible, so if mass m 
moves down a distance y, the pulley will move down by 

y
2

 
 
 

. 

So the force in the spring kyF
2

= . 

Now as pulley is massless F 2T,=  

F kyT
2 4

⇒ = = .  

So the restoring force on the mass m, 
1 1T ky k ' y k ' k
4 4

= = ⇒ =  

A
B

f1 k ' 1 kf
2 m 2 4m 2

⇒ = = =
π π

 

 
Fig. 12.31 

Case (C): 
In this situation if the mass m moved by the pulley will also 
move by y and so the spring will stretch by 2 (as string is 
inextensible) and so, T ' F 2ky= = .  

Now as pulley is massless so T F T ' 4ky= + =  
i.e., the restoring force on the mass m 
So, T 4ky k ' y k ' 4k= = ⇒ =  

C A
1 k ' 1 4kf 2f

2 m 2 m
⇒ = = =

π π
 

 
Fig. 12.32 

 

8. Superposition of SHM 

A simple harmonic motion is produced is produced when a 
force (called restoring force) proportional to the 
displacement acts on a particle. If a particle is acted upon by 
two such forces the resultant motion of the particle is 
combination of two simple harmonic motions. 
 

8.1 In Same Direction 
 

a) Having Same Frequencies: 
Suppose the two individual motions are represented 
by, 

( )1 1 2 2x A sin t & x A sin t= ω = ω + φ  

Both the simple harmonic motions have same angular 
frequency ω . 

( )
1 2

1 2

x x x
A sin t A sin t

= +

= ω + ω + φ
 

 ( )Asin t= ω + α . 

Here, 2 2
1 2 1 2A A A 2A A cos= + + φ  

and 2

1 2

A sintan
A A cos

φ
α =

+ φ
. 
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Fig. 12.33 

Thus, we can see that this is similar to the vector 
addition. The same method of vector addition can be 
applied to the combination of more than two simple 
harmonic motions. 

 
b) Having Different Frequencies: 

1 1 1x A sin t= ω  

2 2 2x A sin t= ω  
Then resultant displacement 

1 2

1 1 2 2

x x x
A sin t A sin t

= +
= ω + ω

 

This resultant motion is not SHM. 

 
8.2 In Two Perpendicular Directions 
Let the motion be in x as well as y directions. They are 
given as: 

( )1x A sin t .... 1= ω  

( ) ( )2y A sin t ..... 2= ω + φ  

The amplitude A1 and A2 may be different and phase 
difference andφ ω is same. So equation of the path may be 
obtained by eliminating t from (1) & (2) 
 

 
Fig. 12.34 

 
On rearranging we get  

( )
2 2

2
2 2

1 21 2

x y 2xycos sin .... 3
A AA A

φ
+ − = φ  

 
 
 
 

Special Case: 
a) If 0φ = °  

2 2

2 2
1 21 2

x y 2xy 0
A AA A

∴ + − =  

( )2

1

Ay x eq. of straight line
A

∴ = ⋅  

 

 
Fig. 12.35 

 
b) If 90φ = °  

( )
2 2

2 2
1 2

x y 1 eq. of ellipse
A A

⇒ + =  

 

 
Fig. 12.36 

 
c) If 1 290 & A A Aφ = ° = =  then  

2 2 2x y A+ =  (eq. of circle) 
 

 
Fig. 12.37 
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9. Damped & Forced 
Oscillations 

9.1 Damped Oscillation 
 

• The oscillation of a body whose amplitude goes on 
decreasing with time is defined as damped oscillation. 

• In this oscillation the amplitude of oscillation decreases 
exponentially due to damping forces like fractional 
force, viscous force etc. 

 

 
Fig. 12.38 

• Due to decrease in amplitude of the oscillator, energy 
goes on decreasing exponentially. 

• The damping force can be expressed as F = -bv (where 
b is a constant called the damping coefficient) and 
restoring force on the system is -kx, we can write 
Newton’s second law as  

netF kx bv ma= − − =  

2

2
dx d xkx b m
dt dt

− − =  

 
 This is the differential equation of damped oscillation.  

 
Fig. 12.39 

 The solution of this equation is given by 

 ( )
bt

2mx A e cos ' t
− 

 = ω + φ
 
 

 

 Where angular frequency of oscillation is 

 
2 2

2k b b'
m 2m 2m

   ω = − = ω −   
   

 

 Where k
m

ω = represents the angular frequency in 

the absence of retarding force (the undamped 
oscillator) & is called natural frequency. 

 

9.2 Forced Oscillation 
 

• The oscillation in which a body oscillates under the 
influence of an external periodic force are known as 
forced oscillation. 

• Resonance: When the frequency of external force is 
equal to the natural frequency of the oscillator, then 
this state is known as the state of resonance. And this 
frequency is known as resonant frequency. 

• Suppose an external force F(t) of amplitude F0 that 
varies periodically with time is applied to a damped 
oscillator. 
Such a force is ( ) 0 dF t F cos t= ω . 

The equation of particle under combined force is 
( ) 0 dma t kx bv F cos t= − − + ω  
2

0 d2
md x bdx kx F cos t

dtdt
+ + = ω  

After solving, 
( )dx A 'cos t= ω + φ  

where, 

( )
2

2 2 d
d

FA '
bm
m

=
ω ω − ω +  

 

 

( ω is natural frequency & k
m

ω = ) 

Graph of amplitude versus frequency for a damped 
oscillator when a periodic driving force is present. 
When the frequency of the driving force equals the 
natural frequency ,ω resonance occurs. 
 

 
Fig. 12.40 
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NCERT Corner
(Some Important Points to Remember) 

1. Periodic Motion
• A motion which repeats itself over and over again

after a regular interval of time is called a Periodic
Motion. E.g., revolution of planets around the sun,
rotation of the earth about its polar axis etc.

• The function which are used to represent periodic
motion are called Periodic Functions.

• One of the simplest periodic function is given by
( )f t A cos t= ω .

2. Oscillatory Motion
A motion in which a body moves back and forth
repeatedly about a fixed point (called mean position) is
called Oscillatory or Vibratory Motion.

3. Simple Harmonic Motion
• In simple harmonic motion (SHM), the

displacement x(t) of a particle from its equilibrium
position is given by,

( ) ( )( )x t A cos t displacement= ω + φ

in which A is the amplitude of the displacement,
the quantity ( )tω + φ is the phase of the motion,

and φ is the phase constant. The angular frequency

ω is related to the period and frequency of the
motion by,

( )2 2 angular frequency .
T
π

ω = = πυ

• Simple harmonic motion can also be viewed as the
projection of uniform circular motion on the
diameter of the circle in which the latter motion
occurs.

• The particle velocity and acceleration during SHM
as function of time are given by,
Velocity: ( ) ( )v t Asin t ,= −ω ω + φ

Acceleration:

( ) ( )2a t A cos t= −ω ω + φ ( )2x t= −ω

Thus, we see that both velocity and acceleration of
a body executing simple harmonic motion are
periodic functions, having the velocity amplitude

mv A= ω and acceleration amplitude 2
ma A= ω ,

respectively.

4. The force acting in a simple harmonic motion is
proportional to the displacement and is always directed
towards the centre of motion.

5. A particle of mass m oscillating under the influence of
Hooke’s law restoring force given by F = -kx exhibits
simple harmonic motion with

( )k angular frequency
m

ω =

( )mT 2 period
k

= π

Such a system is also called a linear oscillator. 
The period T is the time required for one complete 
oscillation, or cycle. It is related to the frequency υ  
by. 

1T =
υ

. 

6. Energy in SHM
• If a particle of mass m executes SHM, then at a

displacement y from mean position, the particle
possesses potential and kinetic energy.

• At any displacement y,

a) Potential energy, 2 2 21 1U m y ky
2 2

= ω = . 

b) Kinetic energy,

( ) ( )2 2 2 2 21 1K m A y k A y
2 2

= ω − = − .

c) Total energy,
2 2 2 2 21E U K m A 2 m A

2
= + = ω = π υ . 

• At mean position, kinetic energy is maximum and
potential energy is zero.

• At extreme position, potential is maximum and
kinetic energy is zero.

• The time period of potential and kinetic energy is
T/2.

• The frequency of oscillation of potential energy
and kinetic energy is twice as that of displacement
or velocity or acceleration.

 SIMPLE HARMONIC MOTION 

NCERT Corner
(Some Important Points to Remember) 
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7. Simple Pendulum
A simple pendulum, in practice, consists of a heavy
but small sized metallic bob suspended by a light,
inextensible and flexible string.
• The motion of a simple pendulum is simple

harmonic whose time period and frequency are
given by

1 gT 2 &
g 2

= π υ =
π





• If a pendulum of length  at temperature Cθ°  has a
time period T, then on increasing the temperature
by C∆θ° its time period changes to T T.+ ∆

where, T 1
T 2

∆
= α ⋅ ∆θ . 

• If the length of a simple pendulum is increased to
such an extent that , i.e., R,→ ∞ >>  then its time
period is

RT 2 84.6 min
g

= π =

where, R = radius of the earth. 

8. Spring Mass system
If the mass is once pulled so as to stretch the spring
and released, the spring pendulum oscillates simple
harmonically having time period and frequency.

m 1 kT 2 and
k 2 m

= π υ =
π

Angular frequency, k
m

ω =

Various Cases Figures 

(i) Spring is light

mT 2
k

= π

(ii) Spring is not light
but has ms

s
1m m
3T 2
k

+
= π

(iii) Spring connected
with two masses
( )1 2m and m

T 2
k
µ

=

(iv) Spring with spring
constants (k1 and
k2) connected in
series

( )1 2

1 2

m k k
T 2

k k
+

= π

(v) Spring connected in
parallel

p

1 2

mT 2
k

m2
k k

= π

= π
+

where, 1 2

1 2

m m
m m

µ = =
+

reduced mass of the system, 

1 2
s

1 2

k kk
k k

=
+

and p 1 2k k k= + . 

9. Simple Harmonic Motion in Special Cases
• The time period of SHM due to the motion of

incompressible and non-viscous liquid in U-tube is

given as 
hT 2
g

= π

where, h = height of undisturbed liquid in each 
limb 
and      L = 2h = total length of liquid column. 

• The time period of a ball performing SHM in

hemispherical bowl is expressed as R rT 2
g
−

= π

where, R and r are radii of bowl and ball.
• The time period of a ball executing SHM in a

tunnel through the earth is expressed as

RT 2
g

= π where, R = radius of earth.



  SIMPLE HARMONIC MOTION 

10. Undamped and Damped Oscillations 
When a simple harmonic system oscillates with a 
constant amplitude which does not change with time, 
its oscillations are called undamped oscillations. 
When a simple harmonic system oscillates with a 
decreasing amplitude with time, its oscillations are 
called damped oscillations. 
 

11. Free and Forces Oscillations 
A body capable of oscillating is said to be executing 
free oscillations, if it vibrates with its own natural 
frequency without the help of any external periodic 
force. 
When a body oscillates with the help of an external 
periodic force with a frequency different from the 
natural frequency of the body, these oscillations are 
called forced oscillations. 
 
 
 
 
 
 
 

12. Resonance 
If an external force with angular frequency dω acts on 

an oscillating system with natural angular frequency ω

, the system oscillates with angular frequency dω . The 
amplitude of oscillations is the greatest when 

dω = ω a condition called resonance. 
13. Superposition of SHM 

A simple harmonic motion is produced when a force 
called restoring force proportional to the displacement 
acts on a particle. If a particle is acted upon by two 
such forces, the resultant motion of the particle is a 
combination of two simple harmonic motions. 
Suppose the two individual motions are represented by 

1 1y A sin t= ω  and  ( )2 2y A sin t= ω + φ  

Both the simple harmonic motions have same angular 
frequency ω . 
Resultant amplitude is expressed as 

2 2
1 2 1 2A a a 2a a cos= + + φ . 
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Waves

 



MOTION IN STRAIGHT LINE 1 

Waves 

1. Introduction and
Classification of Waves

Introduction of Waves: 
When a particle moves through space, it carries KE with 
itself. Wherever the particle goes, the energy goes with it. 
(One way of transport energy from one place to another 
place). 

There is another way (wave motion) to transport energy 
from one part of space to other without any bulk motion of 
material together with it. Sound is transmitted in air in this 
manner.  
NOTE: 

A wave is a disturbance that propagates in space, 
transport energy and momentum from one point to 
another without the transport of matter. 

Few Examples of waves: 

The ripples on a pond (water waves), the sound we hear, 
visible light, radio and TV signals etc.  

1.1 Classification of Waves

• Based on medium necessity: - A wave may or may
not require a medium for its propagation. The waves
which do not require medium for their propagation are
called non-mechanical, e.g. light, heat (infrared), radio
waves etc. On the other hand the waves which require
medium for their propagation are called mechanical
waves. In the propagation of mechanical waves
elasticity and density of the medium play an important
role therefore mechanical waves are also known as
elastic waves.

Example: Sound waves in water, seismic waves in earth’s 
crust.  

• Based on energy propagation: - Waves can be
divided into two parts on the basis of energy
propagation (i) Progressive wave (ii) Stationary
waves. The progressive wave propagates with
constant velocity in a medium. In stationary waves
particles of the medium vibrate with different
amplitude but energy does not propagate.

• Based on direction of propagation:- Waves can be
one, two or three dimensional according to the number
of dimensions in which they propagate energy. Waves
moving along strings are one-dimensional. Surface
waves or ripples on water are two dimensional, while
sound or light waves from a point source are three
dimensional.

• Based on the motion of particles of medium:

Waves are of two types on the basis of motion of 
particles of the medium.  

(i) Longitudinal waves

(ii) Transverse waves

In the transverse wave the direction associated with 
the disturbance (i.e. motion of particles of the 
medium) is at right angle to the direction of 
propagation of wave while in the longitudinal wave 
the direction of disturbance is along the direction of 
propagation. 

1.2  Transverse Wave Motion
Mechanical transverse waves are produced in such type of 
medium which have shearing property, so they are known as 
shear wave or S-wave  
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NOTE: 
Shearing is the property of a body by which it changes its 
shape on application of force. 

⇒ Mechanical transverse waves are generated only in solids
and surface of liquid.

Individual particles of the medium execute SHM about their 
mean position in direction perpendicular to the direction of 
propagation of wave.  

A crest is a portion of the medium, which is raised 
temporarily above the normal position of rest of particles of 
the medium, when a transverse wave passes.  

A trough is a portion of the medium, which is depressed 
temporarily below the normal position of rest of particles of 
the medium, when a transverse wave passes.  

1.3  Longitudinal Wave Motion
In this type of waves, oscillatory motion of the medium 
particles produces regions of compression (high pressure) 
and rarefaction (low pressure) which propagated in space 
with time (see figure). 

NOTE: 
The regions of high particle density are called 
compressions and regions of low particle density are called 
rarefactions. 

The propagation of sound waves in air is visualized as the 
propagation of pressure or density fluctuations. The pressure 

fluctuations are of the order of 1 Pa, whereas atmospheric 
pressure is 510 Pa.  

1.4 Mechanical Waves in Different 
Media

• A mechanical wave will be transverse or longitudinal
depending on the nature ot medium and mode of
excitation.

• In strings, mechanical waves are always transverse
when string is under a tension. In the bulk of gases
and liquids mechanical waves are always
longitudinal e.g. sound waves in air or water. This is
because fluids cannot sustain shear.

• In solids, mechanical waves (may be sound) can be
either transverse or longitudinal depending on the
mode of excitation. The speed of the two waves in
the same solid are different. (Longitudinal waves
travels faster than transverse waves). e.g., if we
struck a rod at an angle as shown in fig. (A) the
waves in the rod will be transverse while if the rod is
struck at the side as shown in fig. (B) or is rubbed
with a cloth the waves in the rod will be longitudinal.
In case of vibrating tuning fork waves in the prongs
are transverse while in the stem are longitudinal.

Furthermore in case of seismic waves produced by 
Earthquakes both S (shear) and P (pressure) waves are 
produced simultaneously which travel through the rock in 
the crust at different speeds 

s pv 5km / s while v 9km / s ≅ ≅   S-waves are transverse 

while P − waves are longitudinal.  

Some waves in nature are neither transverse nor longitudinal 
but a combination of the two. These waves are called 
‘ripple’ and waves on the surface of a liquid are of this type. 
In these waves particles of the medium vibrate up and down 
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and back and forth simultaneously describing ellipses in a 
vertical plane.  

1.5  Characteristics of Wave Motion 
• In wave motion, the disturbance travels through the

medium due to repeated periodic oscillations of the
particles of the medium about their mean positions.

• The energy is transferred from one place to another
without any actual transfer of the particles of the
medium.

• Each particle receives disturbance a little later than
its preceding particle i.e., there is a regular phase
difference between one particle and the next.

• The velocity with which a wave travels is different
from the velocity of the particles with which they
vibrate about their mean positions.

• The wave velocity remains constant in a given
medium while the particle velocity changes
continuously during its vibration about the mean
position. It is maximum at mean position and zero at
extreme position.

• For the propagation of a mechanical wave, the
medium must possess the properties of inertia,
elasticity and minimum friction among its particles.

2. Equation of Plane
Progressive Wave

2.1  Important Terms Connected with 
Wave Motion 

• Wavelength ( )λ [length of one wave]: Distance

travelled by the wave during the time interval in which any
one particle of the medium completes one cycle about its
mean position. We may also define wavelength as the
distance between any two nearest particle of the medium,
vibrating in the same phase.

• Frequency (f): Number of cycle (number of complete
wavelengths) completed by a particle in unit time.

• Time period (T):  Time taken by wave to travel a distance
equal to one wavelength.

• Amplitude (A): Maximum displacement of vibrating
particle from its equilibrium position.

• Angular frequency ( )ω : It is defined as
2 2 f
T
π

ω = = π

• Phase: Phase is a quantity which contains all information
related to any vibrating particle in a wave. For equation

( ) ( )y Asin t kx ; t kx phase.= ω − ω − =

• Angular wave number or propagation constant (k): It is

defined as 
2k π

=
λ

• Wave number ( )v : it is defined as 
1 kv

2
= = =

λ π
number of waves in unit length of the wave pattern. 

• Particle velocity, wave velocity and particle's
acceleration: In plane progressive harmonic wave
particles of the medium oscillate simple harmonically
about their mean position. Therefore, all the formulae
that we studied in SHM apply to the particles here
also. For example, maximum particle speed is Aω  at
mean position and it is zero at extreme positions.
Similarly maximum particle acceleration is 2Aω at
extreme positions and zero at mean position.
However the wave velocity is different from the
particle velocity. This depends on certain
characteristics of the medium. Unlike the particle
velocity which oscillates simple harmonically
(between A+ ω  and A− ω ) the wave velocity is
constant for given characteristics of the medium.

• Particle velocity ( )pv and acceleration ( )pa in a 

sinusoidal wave: The acceleration of the particle is 
the second partial derivative of ( )y x, t with respect 

to t,  
( ) ( ) ( )

2
2 2

p 2

y x, t
a Asin t kx y x, t

t
∂

∴ = = −ω ω − = −ω
∂

i.e., the acceleration of the particle equals 2−ω times
its displacement, which is the same result we
obtained for SHM. Thus, 2

Pa = −ω (displacement) 

2.2  Equation of a Plane Progressive 
Wave 

• Particle velocity in wave motion: The individual
particles which make up the medium do not travel
through the medium with the waves. They simply
oscillate about their equilibrium positions. The
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instantaneous velocity of an oscillating particle of the 
medium, through which a wave is travelling, is 
known as "particle velocity". 

• Wave velocity: The velocity with which the
disturbance, or planes of equal (wave front), travel
through the medium is called wave (or phase)
velocity.
Wave velocity (v) = Frequency of waves (f) ×
wavelength of waves ( )λ

• Relation between particle velocity and wave
velocity:  Wave equation: - ( )y Asin t kx ,= ω −

Particle velocity Wave 

velocity

( )yV , Ak cos t kx
T 2 k x

y 1 y y 1 y
x V t x V t

λ ω ω ∂
⇒ = = λ = = − ω −

π ∂
∂ ∂ ∂ ∂

= − ⇒ = −
∂ ∂ ∂ ∂

Particle velocity at a given position and time is 
equal to negative of the product of wave velocity 
with slope of the wave at that point at that instant. 

2.3  Differential Equation of Harmonic 
Progressive Waves: 

( )

( )

2
2

2

2
2

2

2

2 2

y A sin t kx
t

y Ak sin t kx
x
y 1 y

tx V

∂
= − ω ω −

∂
∂

⇒ = − ω −
∂
∂ ∂

⇒ =
∂∂

2.4  Relation Between Phase Difference 
and Path Difference

Phase 
Difference 
( )∆φ

0 
2
π π 3

2
π 2π  5

2
π 3π

Phase 
Difference 
( )∆λ

0 
4
λ

2
λ 3

4
λ λ  5

4
λ 3

2
λ

Phase 
Difference 
( )t∆

0 T
4

T
2

3T
4

T 5T
4

3T
2

Path difference 
2π

= ×
λ

 phase difference 

3. Transverse Waves on a
String

A transverse wave is a moving wave whose oscillations are 
perpendicular to the direction of the wave. A simple 
demonstration of the wave can be created on a horizontal 
length of the string by securing one end of the string and 
moving the other up and down. Light is another example of 
a transverse wave, where the oscillations are electric and 
magnetic fields that are at right angles to the ideal light rays 
that describe the direction of propagation. 

Transverse waves commonly occur in elastic solids, 
oscillations, in this case, are the displacement of solid 
particles from their relaxed position, in the direction 
perpendicular to the propagation of the wave.  

For example: - The ripples on the surface of the water, 
Electromagnetic waves, Ocean waves, etc. 

The speed of a wave on a string is given by 

( )P
yv A cos t kx .
t

∂
= = ω ω −

∂
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Tv =
µ

where T is tension in the string (in Newtons) and µ  is mass 
per unit length of the string (kg/m).  

It should be noted that v is speed of the wave w.r.t. the 
medium (string).  

In case the tension is not uniform in the string or string has 
nonuniform linear mass density then v is speed at a given 
point and T and µ  are corresponding values at that point. 

The velocity of a wave is calculated by dividing the distance 
traveled by the time it took to travel that distance. For 
waves, this is calculated by dividing the wavelength by the 

period as follows: v
T
λ

=

We can take the inverse proportionality to period and 
frequency and apply it to this situation as follows:  

1v v v f
T T
λ

= = λ = λ

4. Energy Transfer in a String
Wave

4.1  Rate of Energy, Power and 
Intensity of Wave

• Energy Transferred
t

av
0

P dt= ∫

Energy transferred in one time period avP T=

This is also equal to the energy stored in one 
wavelength. 

• When a travelling wave is established on a string,
energy is transmitted along the direction of
propagation of the wave, in form of potential energy
and kinetic energy

Average Power ( ) 2 2 2P 2 f A v= π µ

• Intensity: Energy transferred per second per unit
cross sectional area is called intensity of the wave.

2 2Power P 1I I A v
Cross sectional area s 2

= = ⇒ = ρω

This is average intensity of the wave. 

Energy density:  Energy per unit volume of the wave 

Energy density per unit volume 2 2Pdt I 1 A
svdt v 2

= = = ρω

4.2  Relation Between Amplitude and 
Intensity of Wave 

For light waves, the energy of the light wave is proportional 
to the intensity. 

E I,∝ where E is the energy of the wave and I is the 
intensity. 

( ) ( )2E Amplitude ...... 1∝

Also, the intensity of a wave is power transferred per unit 
area. 

We know that power is energy expended per unit time. 

Therefore,  

EI ,
At

= where A is the area of cross section and t is the time.

Therefore, we can say that. 

( )I E ... 2∝  

From expression (1) and (2) we can say that. 

( )2I Amplitude∝  or Amplitude Intensity∝

5. Longitudinal Waves
5.1  Longitudinal Waves and Equation 

of Longitudinal Waves
Longitudinal waves are the waves where the displacement 
of the medium is in the same direction as the direction of the 
travel of the wave. 

The distance between the centres of two consecutive regions 
of compression or the rarefaction is defined by wavelength 
λ .
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A compression in a longitudinal wave is a region where the 
particles are the closer together while rarefaction in a 
longitudinal wave rarefaction is a region where the particle 
are spread out. 

5.2.  Sound as a Pressure Wave
We can describe sound waves either in terms of excess 
pressure or in terms of the longitudinal 
displacement suffered by the particles of the medium w.r.t. 
mean position. 

( )0s s sin t x / v= ω − represents a sound wave where, 

s = displacement of medium particle from its mean position 
at x,  

( ) ( )0s s sin t kx ..... 1= ω −

When sound is not propagating particles are at mean 
position 1 and 2 

When particles are displaced from mean position. 

Change in volume ( )V x s A xA sA= ∆ = ∆ + ∆ − ∆ = ∆  

V sA s
V xA x

∆ ∆ ∆
= =

∆ ∆

B VP
V
∆

∆ = −

B sP
x
∆

∆ = −
∆

Bdsdp
dx

= −

( ) ( )0dp B ks cos t kx= − − ω −  

( )0dp Bks cos t kx= ω −

( ) ( )maxdp dp cos t kx= ω −

( )0p p sin t kx ..... 2
2
π = ω − + 

 

Where p dp= = variation in pressure at position x and 

0 0p Bks= = maximum pressure variation 

Equation 3.2 represents that same sound wave where, p is 
excess pressure at position x, over and above the average 
atmospheric pressure and pressure amplitude 0p is given by 

( )0 0P Bks ..... 3=

(B = Bulk modulus of the medium, k = angular wave 
number) 

Note from equation (1) and (2) that the displacement of a 
medium particle and excess pressure at any position are out 

of phase by .
2
π Hence a displacement maximum

corresponds to a pressure minima and vice-versa. 

5.3.  Speed of Sound and Laplace’s 
Correction 

Velocity of sound waves in a linear solid medium is given 
by  

( )Yv ..... 1=
ρ

Where Y = Young’s modulus of elasticity and ρ = density. 

Velocity of sound waves in a fluid medium (liquid or gas) is 
given by  

( )Bv ..... 2=
ρ

Where ρ = density of the medium and B = Bulk modulus of 
the medium given by, 

( )dPB V ..... 3
dV

= −

Newton’s formula: Newton assumed propagation of sound 
through a gaseous medium to be an isothermal process. 

PV = constant 

dP P
dV V

−
⇒ =
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and hence B = P using equation (3) and thus he obtained for 
velocity of sound in a gas,  

P RTv
M

= =
ρ

where M = molar mass in kg 

The density of air at 0° at pressure 76 cm of Hg column is 
31.293kg / m .ρ = This temperature and pressure is called

standard temperature and pressure at STP. Speed of sound in 
air is 280m/s. This value is somewhat less than measured 
speed of sound in air 332m/s. Then Laplace suggested the 
correction.  

Laplace’s Correction: Later Laplace established that 
propagation of sound in a gas is not an isothermal but an 
adiabatic process and hence PVγ = constant 

dP P
dV V

⇒ = −γ

Where, 
dPB V P
dV

= − = γ and hence speed of sound in a gas,

( )P RTv ..... 4
M

γ γ
= =

ρ

Factors Affecting Speed of Sound in Atmosphere. 

(a) Effect of Temperature:

As temperature (T) increases velocity (v) increases.

v T∝

For small change in temperature above room
temperature v increases linearly by 0.6m/s for

every 1 C° rise in temperature. 

1/2Rv T
M
γ

= ×

v 1 T
v 2 T

∆ ∆
=

1 vv T
2 T

 ∆ = ∆ 
 

( ) ( ) ( )Tv 0.6 T, T T 273 kelvin∆ = ∆ ∆ = −

(b) Effect of Pressure:

The speed of sound in a gas is given by

P RTv
M

γ γ
= =

ρ

So, at constant temperature, if P changes then ρ

also changes in such a way that P / ρ remains

constant. Hence pressure does not have any effect 
on velocity of sound as long as temperature is 
constant. 

(c) Effect of Humidity:

With increase in humidity density decreases. This
is because the molar mass of water vapour is less
than the molar mass of air. The speed of sound
increases in humid air compared to dry air as. The

density of water vapour is about 5 th
8

times the

density of dry air at ordinary temperature, therefore
the increase of moisture in air tends to decrease the
density of air.

6. Sound Intensity and
Loudness

Intensity of Sound Waves: Like any other progressive 
wave, sound waves also carry energy from one point of 
space to the other. This energy can be used to do work, for 
example, forcing the eardrums to vibrate or in the extreme 
case of a sonic boom created by a supersonic jet, can even 
cause glass panes of windows to crack. The amount of 
energy carried per unit time by a wave is called its power 
and power per unit area held perpendicular to the direction 
of energy flow is called intensity.  

2 21
2

I A Vρω=

For Sound, 

BV
ρ

=

So 0P
BK

=

2
2 0

2 2 2

1 . . .
2

PBI V
V B K

ω=

2
0 .
2

P V
I

K
=

2
0

2
P

I
Vρ

=
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NOTE: 

If The If the source is a point source, then 2

1I
r

∝ and

0
1s and
r

∝ ( )as sin t kr
r

= ω − + θ

If a sound source is a line source, then 
1l
r

∝ and

0
1s and
r

∝ ( )as sin t kr
r

= ω − + θ

Loudness: Audible intensity range for humans: 

The ability of human to perceive intensity at different 
frequency is different. The perception of intensity is 
maximum at 1000 Hz and perception of intensity decreases 
as the frequency decreases or increases from 1000Hz. 

For a 1000Hz tone, the smallest sound intensity that a 
human ear can detect is 12 210 watt. / m .− On the other hand, 
continuous exposure to intensities above 21W / m can result 
in permanent hearing loss.  

The overall perception of intensity of sound to human ear is 
called loudness. 

Human ear do not perceives loudness on a linear intensity 
scale rather it perceives loudness on organismic intensity 
scale. 

For a example: 

If intensity is increased 10 times human ear does not 
perceive 10 times increase in loudness. It roughly perceived 
that loudness is doubled where intensity increased by 10 
times. Hence it is prudent to define a logarithmic scale for 
intensity.  

Decibel Scale: The logarithmic scale which is used for 
comparing two sound intensity is called decibel scale.  

The intensity level β described in terms of decibels is 

defined as ( )
0

I10log dB
I

 
β =  

 

Here 0I is the threshold intensity of hearing for human ear 

i.e 12 2I 10 watt / m .−=

In terms of decibel threshold of human hearing is 1dB

Note that intensity level β is a dimensionless quantity and is

not same as intensity expressed in 2W / m .

7. Superposition of Waves
7.1 Superposition of Waves 
Two or more waves can traverse the same medium without 
affecting the motion of one another. If several waves 
propagate in a medium simultaneously, then the resultant 
displacement of any particle of the medium at any is instant 
is equal to the vector sum of the displacement produced by 
individual by wave. The phenomenon of intermixing of two 
or more waves to produce a new wave is called 
Superposition of waves. Therefore, according to 
superposition principle.  

The resultant displacement of a particle at any point of the 
medium, at any instant of time is the vector sum of the 
displacement caused to the particle by the individual waves. 

If 1 2 3y , y , y .....   are the displacement of particle at a particular
time due to individual waves, then the resultant 
displacement is given by 1 2 3y y y y ....= + + +

   

Principle of superposition holds for all types of waves, i.e., 
mechanical as well as electromagnetic waves. But this 
principle is not applicable to the waves of very large 
amplitude.  

7.2   Reflection of Waves
Reflection of String Waves: A travelling wave, at a rigid or 
denser boundary, is reflected with a phase reversal but the 
reflection at an open boundary (rarer medium) takes place 
without any phase change. The transmitted wave is never 
inverted, but propagation constant k is changed. 

Amplitude of reflected and transmitted waves: 



 WAVES 
 

1v and 2v are speeds of the incident wave and reflected 
wave in mediums respectively then 

2 1
r i

1 2

v vA A
v v

−
=

+
, 2

t i
1 2

2vA .A
v v

=
+

rA is positive if 2 1v v ,> i.e., wave is reflected from a rarer 
medium.  
Reflection of Sound Waves: Reflection of sound waves 
from a rigid boundary (e.g. closed end of an organ pipe) is 
analogous to reflection of a string wave from rigid 
boundary; reflection accompanied by an inversion i.e. an 
abrupt phase change of π . This is consistent with the 
requirement of displacement amplitude to remain zero at the 
rigid end, since a medium particle at the rigid end can not 
vibrate. As the excess pressure and displacement 
corresponding to the same sound wave vary by / 2π  in term 
of phase, a displacement minimum at the rigid end will be a 
point of pressure maxima. This implies that the reflected 
pressure wave from the rigid boundary will have same phase 
as the incident wave, i.e., a compression pulse is reflected as 
a compression pulse and a rarefaction pulse is reflected as a 
rarefaction pulse.  
On the other hand, reflection of sound wave from a low-
pressure region (like open end of an organ pipe) is 
analogous to reflection of string wave from a free end. This 
point corresponds to a displacement maximum, so 
that the incident & reflected displacement wave at this point 
must be in phase. This would imply that this point would be 
a minimum for pressure wave (i.e. pressure at this point 
remains at its average value), and hence the reflected 
pressure wave would be out of phase by π  with respect to 
the incident wave. i.e. a compression pulse is reflected as a 
rarefaction pulse and vice-versa. 

7.2  Interference of Waves
Interference of String Waves: Suppose two identical 
sources send sinusoidal waves of same angular frequency ω  
in positive x-direction. Also, the wave velocity and hence, 
the wave number k is same for the two waves. One source 
may be situated at different points. The two waves arriving 
at a point then differ in phase. Let the amplitudes of the two 
waves be 1A and 2A and the two waves differ in phase by an 
angle φ . Their equations may be written as 

( )1 1y A sin kx t= − ω

And ( )2 2y A sin kx t= − ω + φ

According to the principle of superposition, the resultant 
wave is represented by  

( ) ( )1 2 1 2y y y A sin kx t A sin kx t= + = − ω + − ω + φ

We get ( )y Asin kx t= − ω + α  

Where, 2 2
1 2 1 2A A A 2A A cos= + + φ (A is amplitude of the 

resultant wave) 

Also, 2

1 2

A sintan
A A cos

φ
α =

+ φ
( α is phase difference of the

resultant wave with the first wave) 
Constructive and Destructive Interference 
Constructive Interference:  

When resultant amplitude A is maximum 1 2A A A= +

When cos 1or 2nφ = + φ = ± π  

Where n is an integer.  

Destructive Interference: 

When resultant amplitude A is minimum  

Or 
1 2A A A= −

When ( )cos 1or 2n 1φ = − φ = ± + π  

When n is an integer.  

Interference of Sound Waves:  

If ( )1 m1 1 1p p sin t kx= ω − + θ

and ( )2 m2 2 2p p sin t kx= ω − + θ

Resultant excess pressure at point O is 

1 2p p p= +  

( )0p p sin t kx⇒ = ω − + θ

Where, 

( ) ( ) ( )2 2
0 m1 m2 m1 m2 1 2 2 1p p p 2p p cos , k x x ... 1= + + φ φ = − + θ − θ

(i) For constructive interference

0 m1 m22n p p pφ = π ⇒ = +

(ii) For destructive interference

( ) 0 m1 m22n 1 p p pφ = + π ⇒ = −

If φ is only due to path difference, then 
2 x,π

φ = ∆
λ

and 

condition for constructive interference: 
1 2x n , n 0, ,
1 2

∆ = ± λ = ± ±

Condition for destructive interference: 

( ) 1 2x 2n 1 , n 0, ,
2 1 2
λ

∆ = ± + = ± ±

From equation (1) 
2 2 2
0 m1 m2 m1 m2P P P 2P P cos= + + + φ  
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Since intensity, I ∝ (Pressure amplitude)2, 

We have, for resultant intensity,  

( )1 2 1 22 cos ..... 2I I I I I φ= + +  

1 2 0I I I= =

( ) ( )2
0 0I 2I 1 cos I 4I cos ...... 3

2
φ

= + φ ⇒ =

Hence in this case,  

For constructive interference: 0, 2 , 4φ = ± π ± π  and max 0I 4I=

And for destructive interference: ,3 ....φ = π π and minI 0=

Coherence: Two sources are said to be coherent if the phase 
difference between them at a given point does not change 
with time. In this case their resultant intensity at any point in 
space remains constant with time. Two independent sources 
of sound are generally incoherent in nature, i.e. phase 
difference 
between them changes with time and hence the resultant 
intensity due to them at any point in space changes with 
time. 

8. Standing Waves
8.1  Introduction to Standing Waves
• When two identical progressive waves (transverse or

longitudinal) propagating in opposite direction
superimpose in a bounded medium (having
boundaries) the resultant wave is called stationary
wave or standing wave.

• Stationary wave pattern may be obtained only and
only in limited region.

• We can obtain two same type of progressive waves,
only & only by method of reflection.

• According to the nature of reflected surface,
reflection are of two types –

(a) Rigid End (b) Free End

In such type of reflection 
incident and reflected 
waves have phase 
difference of π and 
direction of propagation 
are opposite. 

In such type of reflection 
incident and reflected waves 
are in phase and direction of 
propagation are opposite 

Incident wave 
( )1 siny a t kxω= −

Reflected wave 
( )2 siny a t kxω π= + +  

Or, ( )2 siny a t kxω= − +

1 2y y y= +

( )
( )

sin

sin

t kx
y a

t kx

ω

ω

−  =  
− +  

after solving 

2 sin cosy a kx tω= −

cosy A tω= − where 
2 sinA a kx=  

at 0x = 0A =

Incident wave 
( )1 siny a t kxω= −

Reflected wave 
( )2 siny a t kxω= +

From superposition of wave 

1 2y y y= +

( )
( )

sin

sin

t kx
y a

x kx

ω

ω

−  =  
+ +  

after 

solving 

2 cos siny a kx tω=

siny A tω= where 
2 cosA a kx=  

So 0x = and 2A a=  

Special Properties of Stationary Wave Pattern 

• Zero wave velocity: No transfer of energy between
two points, particle velocity is non zero but wave
velocity is zero.

• Position of antinode-4 & nodes in this pattern
remains fix.

• The particles between two consecutive nodes vibrate
in same phase while medium particles nearby of any
node on both sides always vibrate in opposite phase.

• All medium particles doing simple harmonic
vibrations have identical time period but different
vibration Amplitude and because of this their
maximum velocity at mean position is different

• All medium particles pass through their mean
position simultaneously but with different maximum
velocity.

• All medium particles pass their mean position in their
one complete vibration two times hence stationary
wave pattern is obtained as straight line twice in its
one complete cycle.

• In this pattern, at antinode position, displacement and
velocity is maximum, but wave strain is minimum.

Strain = slope of stationary wave pattern dy
dx

 
 
 

At node position displacement and velocity is
minimum but wave strain is maximum.

• Amplitude of incident wave > Amplitude of reflected
wave
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For node 1 2a a− ⇒ minima 

For antinode 1 2a a+ ⇒ maxima 

• For any wave each and every reflecting surface have
some absorptive power and due to this the energy,
intensity & amplitude of reflected wave is always
less compared to that of incident wave. Two waves
difference in their amplitude having same frequency
and wavelength and propagate in reverse or opposite
direction always give stationary wave pattern by their
superposition.

• According to nature of superposing waves stationary
waves are of two types-
Transverse stationary waves → Musical instruments
based on wire (sonometer).
Longitudinal stationary waves → Musical
instruments based on air (resonance tube).

• Only applied to longitudinal stationary wave

If medium particle move in this way 

At antinode → pressure & density constant so 
variations min. 

At node → Pressure & density variations  maximum. 

• change in pressure const.
volumetric straingas

dPE
dy
dx

= = =
 
 
 

 

Then strain dydP
dx

 ∝  
 

So strain is maximum at node positions and 
minimum at antinode positions. 

 

Closed Organ Pipe 

Open Organ Pipe 

Vibration of Air columns: 
When two longitudinal waves of same frequency and 
amplitude travel in a medium in opposite direction then by 
superposition, standing waves are produced. These waves 
are produced in air columns in cylindrical tube of uniform 
diameter. These sound producing tubes are called organ 
pipes. 

Vibration of air column in Closed Organ Pipe: 
The tube which is closed at one end and open at the other 
end is called closed organ pipe. On blowing air at the open 
end, a wave travels towards dosed end from where it is 
reflected towards open end. As the wave reaches open end, 
it is reflected again. So two longitudinal waves travel in 
opposite directions to superpose and produce stationary 
waves. At the closed end there is a node since particles does 
not have freedom to vibrate whereas at open end there is an 
antinode because particles have greatest freedom to vibrate. 
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Hence on blowing air at the end, the column vibrates 
formatting antinode at free end and node at closed end. If l
is length of pipe and λ be the wavelength and v be the 
velocity of of sound in organ pipe then  

Case (i) 1
1 4

4
l lλ

λ= ⇒ =

1
1 4

v vn
lλ

⇒ = =  Fundamental frequency.

Case (ii) 2
2

3 4
4 3

ll λ
λ= ⇒ =

2 1
2

3 3
4

v vn n
lλ

⇒ = = =  First overtone frequency. 

Case (iii) 3
3

5 4
4 5

ll
λ

λ= ⇒ =

3 1
3

5 5
4

v vn n
lλ

⇒ = = =  Second overtone frequency. 

When closed organ pipe vibrate in mth overtone then 

( )2 1
4

l m λ
= + so 

( ) ( )4 2 1
2 1 4

l vn m
m l

λ = ⇒ = +
+

Hence frequency of overtone is given by 
1 2 3: : ..... 1: 3 : 5....n n n =  

Vibration of air columns in open organ pipe: 
The tube which is open at both ends is called an open organ 
pipe. On blowing air at the open end, a wave trawl towards 
the other end from which waves travel in opposite direction 
to superpose and produce stationary wave. Now the pipe is 
open at both ends by which an antinode is formed at open 
end. Hence on blowing air at the open-end antinodes are 
formed at each end and nodes in the middle. If f is length of 
the pipe and X be the wavelength and v is velocity of sound 
in organ pipe. 

Case (i) 1
1 2

2
l lλ

λ= ⇒ =

1
1 2

v vn
lλ

⇒ = =  Fundamental frequency.

Case (ii) 2
2

2 2
2 2

ll λ
λ= ⇒ =

2 1
2

2 2
2

v vn n
lλ

⇒ = = =  First overtone frequency. 

Case (iii) 3
3

3 2
2 3

ll
λ

λ= ⇒ =

3 1
3

3 3
2

v vn n
lλ

⇒ = = =  Second overtone frequency. 

Hence frequency of overtones are given by the relation 

1 2 3: : ..... 1: 2 : 3n n n =

If an open pipe and a closed pipe have same length 

open closedn n=  

When open organ pipe vibrate in nth overtone then 

( )1
2

l m λ
= + so 

( ) ( )2 1
1 2

l vn m
m l

λ = ⇒ = +
+

8.2   End Correction
As mentioned earlier the displacement antinode at an open 
end of an organ pipe lies slightly outside the open end. The 
distance of the antinode from the open end is called end 
correction and its value is given by e 0.6r=  
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where r = radius of the organ pipe. with end correction, the 
fundamental frequency of a closed pipe  cf  and an open 

organ pipe  0f  will be given by 

 cf
4 L  0.6r

 and 
 

......50

v v
f

2 L 1.2r


9. Experimental study of
Standing Waves

9.1   Sonometer
 If a vibrating Tuning fork is pressed against a

sonometer wire then forced vibrations are produced
in table of hollow box & these vibrations are
transferred to air coloum filled in hollow box which
results into increase in vibration amplitude of sound
& intensity of sound increases. Air filled hollow box
is called sound box.

 During contact with table some energy is transferred
to table so TF can not do vibrations for longer
duration

 At resonance maximum energy is transferred to table
so TF can do vibrations not for longer duration.

 At resonance maximum energy is transferred from
TF to vibrating wire and sound intensity is
maximum.

Laws of Transverse Vibrations of a String: Sonometer 

The fundamental frequency of vibration of a string fixed at 
both ends is given by equation. From this equation, one can 
immediately write the following statements known as "Laws 
of transverse vibrations of a string".  

 Law of Length - The fundamental frequency of
vibration of a string (fixed at both ends) is inversely
proportional to the length of the string provided its
tension and its mass per unit length remain the same.

v
L


1

If F and  are constants. 

 Law of Tension - The fundamental frequency of a
string is proportional to the square root of its tension
provided its length and the mass per unit length
remain the same.

 v  F if L and  are constants. 

 Law of Mass - The fundamental frequency of a string
is inversely proportional to the square root of the
linear mass density, i.e., mass per unit length,
provided the length and the tension remain the same.

 
1

v


 if L and F are constants. 

9.2   Resonance Tube
Figure shows schematically the diagram of a simple 
apparatus used in laboratories to measure the speed of sound 
in air. Along cylindrical glass tube (say about 1 in) is fixed 
on a vertical wooden frame. It is also called a resonance 
tube. A rubber tube connects the lower end of this glass tube 
to a vessel which can slide vertically on the same wooden 
frame. A meter scale is fitted parallel to and close to the 
glass tube. 

The vessel contains water which also goes in the resonance 
tube through the rubber tube. The level of water in the 
resonance tube is same as that in the vessel. Thus, by sliding 
the vessel up and down, one can change the water level in 
the resonance tube. 

A tuning fork (frequency 256 Hz if the tube is 1 in long) is 
vibrated by hitting it on a rubber pad and is held near the 
open end of the tube in such a way that the prongs vibrate 
parallel to the length of the tube. Longitudinal waves are 
then sent in the tube.  

The water level in the tube is initially kept high. The tuning 
fork is vibrated and kept dose to the open end, and the 
loudness of sound coming from the tube is estimated. The 
vessel is brought down a little to decrease the water level in 
the resonance tube. The tuning fork is again vibrated, kept 
close to the open end and the loudness of the sound coming 
from the tube is estimated. The process is repeated until the 
water level corresponding to the maximum loudness is 
located. Fine adjustments of water level are made to locate 
accurately the level corresponding to the maximum 
loudness. The length of the air column is read on the scale 
attached. In this case, the air column vibrates in resonance 
with the tuning fork. The minimum length of the air column 
for which the resonance takes place corresponds to the 
fundamental mode of vibration. A pressure antinode is 
formed at the water surface (which is the closed end of the 
air column) and a pressure node is formed near the open 
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end. In fact, the node is formed slightly above the open end 
(end correction) because of the air-pressure from outside. 
Thus, for the first resonance the length 1l  of the air column 
in the resonance tube is given by 

( )1 ,....
4

l e iλ
+ =

Where d is the end correction. 

The length of the air column is increase to a little less than 
three times of .l The water level is adjusted so that the 
loudness of the sound coming from the tube becomes 
maximum again. The length of the air column is noted on 
the scale. In this second resonance the air column vibrates in 
the first overtone. There is one node and one antinode in 
between the ends of the column. The length 2l of the column 
is given by  

( )2
3 . ....
4

l e iiλ
+ =

By (i) and (ii), 

( )2 1 ,
2

l l λ
− = or ( )2 12 .l lλ = −

10. Beats
When two sound waves of same amplitude and different 
frequency superimpose, then intensity at any point in space 
varies periodically with time. This effect is called beats. 
If the equation of the two interfering sound waves emitted 
by 1s and 2s at point O are, 

( )1 0 1 1 1 1p p sin 2 f t k x= π − + θ

( )2 0 2 2 2 2p p sin 2 f t k x= π − + θ

Let 1 1 1 1k x− + θ = φ and 2 2 2 2k x− + θ = φ

By principle of superposition 

( ) ( )1 2 1 2
0 1 2 1 22p sin f f t cos f f t

2 2
φ + φ φ − φ   = π + + π − +   

   

i.e., the resultant sound at point O has frequency 1 2f f
2
+ 

 
 

while pressure amplitude ( )0p t′ varies with time as 

( ) ( ) 1 2
0 0 1 2p t 2p cos f f t

2
φ − φ ′ = π − + 

 

Hence pressure amplitude at point O varies with time with a 

frequency of 1 2f f
2
− 

 
 

Hence sound intensity will vary with a frequency 1 2f f−

This frequency is called beat frequency ( )Bf  and the time 
interval between two successive intensity maxima 
(or minima) is called beat time period ( )BT  

B 1 2f f f= − B
1 2

1T
f f

=
−

IMPORTANT POINTS: 
 

1. The two superimposed sound wave producing beats
must have a frequency in the audible range i.e., 20Hz
to 20Khz.

2. Beat phenomenon can be used for determining an
unknown frequency by sounding it together with a
source of known frequency.

3. If the arm of a tuning fork is waxed or loaded, then its
frequency decreases. 

4. If arm of tuning fork is filed, then its frequency
increases.

5. The two waves should have a very small difference in
there frequencies. This difference should not be more
than 10Hz

6. The amplitude of the waves should preferably b equal
so that the maximum and the minimum intensity of
sound produced in the beats can be heard distinctly and
clearly.

11. Doppler’s Effect
The apparent change in frequency or pitch due to relative 
motion of source and observer along the line of sight is 
called Doppler Effect. While deriving these expressions, we 
make the following assumptions:  

1. The velocity of the source, the observer and the medium
are along the line joining the positions of the source and
the observer.

2. The velocity of the source and the observer is less than
velocity of sound.
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Doppler effect takes place both in sound and light. In sound 
it depends on whether the source or observer or both are in 
motion while in light it depends on whether the distance 
between source and observer is increasing or decreasing. 

Notations:  

n → Actual frequency  

n′ → observed frequency (apparent frequency) 

λ → actual wavelength

′λ → observed (apparent) wavelength

v → velocity of sound

sv → velocity of source

0v → velocity of observer

wv → wind velocity

Case I:

Source in motion, Observer at rest, Medium at rest:

Suppose the source S and observer O are separated by 
distance v. Where v is the velocity of sound. Let n be the 
frequency of sound emitted by the source. Then n waves 
will be emitted by the source in one second. These n waves 
will be accommodated in distance v.  

So, wavelength 
total distance v

total number of waves n
λ = =

1. Source moving towards stationary observer:

Let the source start moving towards the observer with
velocity sv , after one second, the n waves will be 

crowded in distance ( )sv v .− Now the observer shall feel 

that he is listening to sound of wave length ′λ and 
frequency n . 

Now apparent wavelength 

sv vtotaldistance
total number of waves n

−′λ = =

And changed frequency, 

s s S

v v v fvf n
v v v v v v

n

 
′ = = = = ′ −λ − −   

 
 

So, as the source of sound approaches the observer the 
apparent frequency n′ becomes greater than be true 
frequency n,  

2. When source move away from stationary observer:

For this situation n waves will be crowded in distance

sv v .+

So, apparent wavelength sv v
n
+′λ =

And apparent frequency 

s s S

v v v vf n f
v v v v v v

n

   
′ = = = =   ′ +λ + +     

 
 

 

So, n′ becomes less thatn ( )n. f f′ <

Case II 

Observer in motion, source at rest, medium at rest: 

Let the source (S) and observer (O) are in rest at their 
respective places. Then n waves given by source ‘S’ would 
be crossing observer ‘ O’  in one second and fill the space 

( )OA v=

1. Observer move towards Stationary Source:

When observer ‘O’ moves towards ‘S’ with velocity 0v , it 

will cover 0v displace in one second. So the observer has 
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received not only the f waves occupying OA but also 
received additional number of n∆ waves occupying the 
distance ( )oOO v′ = . 

So, total waves received by observer in one second 

i.e., apparent frequency ( )n′ = Actual waves (n) +

Additional waves ( )n∆

( )
o o ov v v v vv vf f

v / f v n
+ +   ′ = + = = λ =  λ λ   


 

(so, f f′ > ) 

2. Observer Move Away from Stationary Source: -

For this situation n waves will be crowded in distance
ov v .−

When observer move away from source with 0v velocity 
then he will get n∆ waves less than real number of waves. 
So, total number of waves received by observer i.e.,  

Apparent frequency ( )f ′ = Actual waves ( )v − reduction in 

number of waves ( )v∆  

o o ov v v v vv vv v
v v

− −   ′ = − = = λ =   ′λ λ λ   


(so v v′ < ) 

Case III: 

Effect of Motion of Medium:  

General formula for a Doppler effect 

( )0

s

v v
n n ...... i

v v
 ±′= =  
 

If medium (air) is also moving with mv velocity in direction 
of source and observer. Then velocity of sound relative to 
observer will be mv v± (-ve sign, if mv is opposite to sound 
velocity). So, 

m o

m s

v v v
n n

v v v
 ± ±′ =  ± 

[on replacing v by mv v± is equal (i)] 

NOTE: 
When both ‘S’ and ‘O’ are in rest (i.e., s ov v 0= = ) then 
there is no effect on frequency due to motion of air. 

Case-I 

If medium moves in a direction opposite to the direction of 

propagation of sound, then m o

m s

v v v
v v

v v v
 − ±′ =  − ± 

Case-II 

Source in motion towards the observer. Both medium and 
observer are at rest. 

s

vv v;
v v

 
′ =  − 

clearly v v′ >  

So, when a source of sound approaches a stationary 
observer, the apparent frequency is more than the actual 
frequency.  

Case-III: 

Source in motion away from the observer. Both medium and 
observer are at rest. 

s

vv v;
v v

 
′ =  + 

clearly v v′ <  

So, when a source of sound moves away from a stationary 
observer, the apparent frequency is less than actual 
frequency.  

Case-IV: 

Observer in motion towards the source. Both medium and 
source are at rest. 

ov v
v v;

v
+ ′ =  

 
clearly v v′ >  

So, when observer is in motion towards the source, the 
apparent frequency is more than the actual frequency.  

Case-V: 

Observer in motion away from the source. Both medium and 
source are at rest. 

0v v
v v;

v
− ′ =  

 
clearly v v′ <  

So, when observer is in motion away from the source, the 
apparent frequency is less than the actual frequency.  

Case-VI: 

Both source and observer are moving away from each other. 
Medium at rest.  

0

s

v v
v v;

v v
 −′ =  + 

clearly v v′ >  
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NCERT Corner 
1. A wave is a disturbance that propagates in space,

transport energy and momentum from one point to
another without the transport of matter.

2. Mechanical transverse waves are produced in such
type of medium which have shearing property, so
they are known as shear wave or S-wave

3. A crest is a portion of the medium, which is raised
temporarily above the normal position of rest of
particles of the medium, when a transverse wave
passes.

4. A trough is a portion of the medium, which is
depressed temporarily below the normal position of
rest of particles of the medium, when a transverse
wave passes.

5. Longitudinal Wave Motion:  Longitudinal wave
have oscillatory motion of the medium particles
produces regions of compression (high pressure) and
rarefaction (low pressure) which propagated in space
with time (see figure).

6. The regions of high particle density are called
compressions and regions of low particle density are
called rarefactions.

7. Wavelength ( )λ [length of one wave]: Distance

travelled by the wave during the time interval in
which any one particle of the medium completes one
cycle about its mean position. We may also define
wavelength as the distance between any two nearest
particle of the medium, vibrating in the same phase

9. Phase: Phase is a quantity which contains all
information related to any vibrating particle in a
wave. For equation

( ) ( )y Asin t kx ; t kx phase.= ω − ω − =

10. Wave number ( )v : it is defined as 1 kv
2

= = =
λ π

number of waves in unit length of the wave pattern.

11. Differential equation of Harmonic Progressive
Waves:

Differential equation of Harmonic Progressive
Waves is given by:

( )
2

2
2

y A sin t kx
t

∂
= − ω ω −

∂

( )
2

2
2

2

2 2

y Ak sin t kx
x
y 1 y

tx V

∂
⇒ = − ω −

∂
∂ ∂

⇒ =
∂∂

12. Wave velocity: The velocity with which the
disturbance, or planes of equal (wave front), travel
through the medium is called wave (or phase)
velocity

13. Transverse wave: A transverse wave is a moving
wave whose oscillations are perpendicular to the
direction of the wave

The speed of a wave on a string is given by

Tv =
µ

where T is tension in the string (in Newtons) and µ  
is mass per unit length of the string (kg/m).  

14. When a travelling wave s established on a string,
energy is transmitted along the direction of
propagation of the wave, in form of potential energy
and kinetic energy

15. Intensity of Sound Waves: The amount of energy
carried per unit time by a wave is called its power
and power per unit area held perpendicular to the
direction of energy flow is called intensity.

16. Loudness: Audible intensity range for humans: The
ability of human to perceive intensity at different
frequency is different. The perception of intensity is
maximum at 1000 Hz and perception of intensity
decreases as the frequency decreases or increases
from 1000Hz.

17. Decibel Scale: The logarithmic scale which is used
for comparing two sound intensity is called decibel
scale. The intensity level β described in terms of

decibels is defined as ( )
0

I10log dB
I

 
β =  

 

18. Superposition of Waves: The phenomenon of
intermixing of two or more waves to produce a new
wave is called Superposition of waves. Therefore,
according to superposition principle.

19. The resultant displacement of a particle at any point
of the medium, at any instant of time is the vector
sum of the displacement caused to the particle by the
individual waves.
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20. Coherence: Two sources are said to be coherent if
the phase difference between them does not change
with time. In this case their resultant intensity at any
point in space remains constant with time. Two
independent sources of sound are generally
incoherent in nature, i.e. phase difference between
them changes with time and hence the resultant
intensity due to them at any point in space changes
with time.

21. Standing Waves: Standing waves can be transverse
or longitudinal, e.g., in strings (under tension) if
reflected wave exists, the waves are transverse-

 stationary, while in organ pipes waves are 
longitudinal-stationary. 

22. Beats: When two sound waves of same amplitude
and different frequency superimpose, then intensity
at any point in space varies periodically with time.
This effect is called beats. Beat phenomenon can be
used for determining an unknown frequency by
sounding it together with a source of known
frequency.

23. Doppler’s Effect: The apparent change in  frequency
or pitch due to relative motion of source  and observer
along the line of sight is called Doppler Effect.

Assumptions: (i) The velocity of the source, the
observer and the medium are along the line joining
the positions of the source and the observer.

(ii) The velocity of the source and the observer is  less
than velocity of sound.
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THERMAL PHYSICS



Thermal Physics
 

1.   Temperature & Heat 
• Temperature : Temperature is a relative measure of 

hotness or coldness of a body. 
SI Unit : Kelvin (K) 
Commonly Used Unit : C or F° °  

• Heat : Heat is a form of energy flow  
(i) between two bodies or  
(ii) between a body and its surroundings  
by virtue of temperature difference between them 
SI Unit : Joule (J) 
Commonly Used Unit : Calorie (Cal) 
Conversion : 1 cal = 4.186 J 

NOTE: 

Heat always flows from a higher temperature 
system to a lower temperature system. 

 

1.1 Zeroth Law of Thermodynamics 
The zeroth law of thermodynamics states that if two 
thermodynamic systems are each in thermal equilibrium 
with a third one, then they are in thermal equilibrium with 
each other. 

 
Fig. 14.1 

• Zeroth law of thermodynamics takes into account that 
temperature is something worth measuring because it 
predicts whether the heat transfer between objects or 
not. This is true regardless of how the objects 
interact. 

• Even if two objects are not in physical contact, heat 
still can flow between them, by means of radiation 
mode of heat transfer & zeroth law of 
thermodynamics states that, if the system are in 
thermal equilibrium, no heat flow will take place. 

 
 

1.2 Temperature Scale 
Measurement of Temperature 
The measurement of temperature is done by some specified 
as given below: 
Different Scales to Measure the Temperature 

Name of 
Scale 

Measuring 
Unit 

Frezzing or 
ice point 
(Lower 

fixed point) 

Boiling or 
steam point 

(Upper 
fixed point) 

Celsius 
Point 

Degree 
Centigrade
( )C°  

0 C°  100 C°  

Fahrenheit 
Point  

Degree 
Fahrenheit
( )F°  

32 F°  212 F°  

Reaumur 
scale 

Degree 
Reaumur 
( )R°  

0 R°  80 R°  

Kelvin 
Scale 

Kelvin (K) 273.15 K 373.15 K 

 
Principle: Observation of Thermometric property with the 
change in temperature and comparing it with certain 
reference situations. 
Reference situation is generally ice point or steam point. 
 
1.2.1 Celsius and Fahrenheit Temperature 

Scales 
 

In Celsius Scale In Fahrenheit Scale 
Ice Point 0 C→ ° . 
Steam Point 100 C→ ° . 

Ice Point 32 F→ ° . 
Steam Point 212 F→ ° . 

 
It implies that 100 division in Celsius scales is equivalent to 
180 divisions in Fahrenheit scale. 

Hence cf tt 32
180 100
−

⇒ =  
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Fig. 14.2 

 
1.2.2 Absolute Temperature Scale 
It is kelvin scale  
Ice point → 273.15 K  
Steam point → 373.15 K  
Comparing it with the Celsius scale, number of scale 
division in both the scales is same. 

c kt 0 C t 273.15
100 100
− ° −

=  

Kelvin scale is called as absolute scale, because it is 
practically impossible to go beyond 0 K in the negative side. 
 

 
 

 
Fig. 14.3 

 

To convert the temperature to one scale to another, the 
following relation is used 

( )
( ) ( )

( )
( ) ( )

Temperature on one scale  LFP ice point
UFP Steam point LFP ice point

Temperature on other scale  LFP ice point
UFP Steam point LFP ice point

−
−

−
=

−

 

Relation between C, F and K temperature scales is given 
below: 
C F 32 K 273
5 9 5

− −
= = . 

 
 

 
1.2.3 Thermometers 
Instrument used to measure temperature of any system is 
called as thermometer.  
Examples : Liquid in Glass thermometer, Platinum 
Resistance Thermometer, Constant Volume Gas 
Thermometers. 
a) Liquid in Glass thermometer and Platinum Resistance 

thermometer give uniform readings for ice point & 
steam point but go non uniform for different liquids 
and different materials. 

b) Constant volume gas thermometer gives same 
readings irrespective of which gas. It is based on the 
fact that at low pressures and constant volume, P × T 
for a gas is constant.  
 

 
Fig. 14.4 

 

c) All gases converge to absolute zero at zero pressure. 
 

2. Thermal Expansion 
When matter is heated without any change in its state, it 
usually expands. This phenomena of expansion of matter on 
heating is called thermal expansion of matter.  
There are three types of thermal expansions. 
 

2.1 Expansion of Solids 
Three types of expansion takes place in solid as given 
below: 
a) Linear Expansion The expansion in length of a body 

due to increase in its temperature is called the linear 
expansion.  

 
Fig. 14.5 

Increase in length, ( )2 1 1 t= + α∆   

where, 1 2and  are initial and final lengths,  

t∆ = change in temperature and  
α = coefficient of linear expansion. 
Coefficient of linear expansion, 



  THERMAL PHYSICS 
 

t
∆

α =
× ∆




 

where, = real length 
and   ∆ = change in length 
and   t∆ = change in temperature. 
The coefficient of linear expansion of a material of a 
solid rod is defined as increase in length per unit 
original length per unit rise in temperature. Its unit is 

1 1C or K− −° . 
b) Superficial Expansion: The expansion in the area of 

a surface due to increase in its temperature is called 
area expansion.  

 
Fig. 14.6 

Increase in area, ( )2 1A A 1 t= + β∆  

where, A1 and A2 are initial and final area and β is a 
coefficient of superficial expansion, 

Coefficient of superficial expansion, A
A t

∆
β =

× ∆
 

where, A = area, 
         A∆ = change in area 
and    t∆ = change in temperature. 
The coefficient of area expansion of metal sheet is 
defined as the increase in its surface area per unit 
original surface area per unit rise in temperature. Its 
unit is 1 1C or K− −° . 

c) Cubical Expansion: The expansion in the volume of 
an object due to increase in its temperature is known 
as cubical or volume expansion.  

 
Fig. 14.7 

Increase in volume, ( )2 1V V 1 t= + γ∆  

where V1 and V2 are initial and final volumes and γ

is a coefficient of cubical expansion. 

The coefficient of cubical expansion, V
V t

∆
γ =

× ∆
 

where, V = real volume,  
V∆ = change in volume and t∆ = change in 

temperature. 
The coefficient of volume (cubical) expansion of a 
substance is defined as the increase in volume per 
unit original volume per unit rise in its temperature. 
Its unit is 1 1C or K− −° . 

 

2.2 Expansion of Liquids 
• Liquids do not have linear and superficial expansion 

but these only have volumetric expansion. 
• Since, liquids are always heated in a vessel, so 

initially on heating the system (liquid + vessel), the 
level of liquid in vessel falls (as vessel expands more 
since it absorbs heat and liquid expands less) but later 
on, it starts rising due to faster expansion of the 
liquid. Thus, liquids have two coefficients of volume 
expansion. 

a) Apparent Expansion of Liquids: When expansion 
of the container containing liquid, on heating is not 
taken into account, the observed expansion is called 
apparent expansion of liquids. 
Coefficient of apparent expansion of a liquid 

( ) ( )
a

apparent or observed incerease in volume
original volume change in temperature

γ =
×

. 

b) Real Expansion of Liquids: When expansion of the 
container, containing liquid, on heating is also taken 
into account, then observed expansion is called real 
expansion of liquids.  
Coefficient of real expansion of liquid 

( )r
real incerease in volume

original volume change in temperature
γ =

×
 

Both rγ and aγ are measured in 1C−° . 

We can show that r a gγ = γ + γ  

where, gγ is the coefficient of cubical expansion of 

the container (vessel). 
 
2.2.1 Anomalous Expansion of Water  
Generally, with increasing temperature, the volume 
expansion coefficient of liquids is about ten times greater 
than that of solids. Water is an exception to this rule. From 
0 C to 4 C° ° water contracts and beyond 4 C° ,it expands. 
Thus, density of water reaches a maximum value of 
1000kgm-3 at 4 C° . 
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Fig. 14.8 

 

2.3 Thermal Expansion of Gases 
On heating, gases expand more than solids or liquids and 
equal volume of different gases expands equally, when 
heated by the same amount. 
All gases have coefficient of volume expansion vγ with 

volume variation given by ( )0 vV V 1 T= + γ ∆ and pressure 

variation is given by ( )0 pp p 1 T= + γ ∆ . 

2.3.1 Variation of Density with Temperature 
Most substances expand when they are heated, i.e., volume 
of a given mass of a substance increases on heating, so 
density decreases.  

Hence 1
V '

ρ ∝  

( ) 1' 1 T −ρ = ρ + γ∆  
As γ is small 

( )
( )

11 T 1 T

' 1 T

−+ γ∆ = − γ∆

ρ = ρ − γ∆
 

 
 

 
Types of Expansion Fractional Change Coefficient of Expansion 

 

L T
L

∆
= α∆  

Coefficient of Linear Expansion ( )α : 

Increase in length per unit length per degree rise in temperature. 

 

A T
A

∆
= β∆  

Coefficient of Area Expansion ( )β : 

Increase in area per unit area per degree rise in temperature 

 

V T
V

∆
= γ∆  

Coefficient of Volume Expansion ( )γ : 

Increase in area per unit volume per degree rise in temperature 
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NOTE: 

• α for metals generally higher than α for 
non-metals. 

• γ is nearly constant at high temperatures 
but for all low temperature it depends on 
temperature. 

 
Fig. 14.9 

Coefficient of volume expansion of Cu as a 
function of temperature. 

 
• In general  

33
2

γ = α = β  

Proof: Imagine a cube of length   that expands 
equally in all directions, when its temperature 
increases by small ∆T;  
We have 

T∆ = α ∆   
Also, 

( )3 3 3 2 2 3 3V 3 3∆ = + ∆ − = + ∆ + ∆ + ∆ −         
 

In Equation (1) we ignore 33 & as2∆ ∆ ∆     is very 

small as compared to  . 
So, 

2V 3∆ = ∆                                         …(1) 

( )3VV 3V T ... 2∆ = ∆ = α∆



 

V 3 T
V

∆
∴ = α∆  

3⇒ γ = α  
Similarly, we can prove for areal expansion 
coefficient. 

NOTE: 

Relation between coefficients of linear, 
superficial and cubical expansion :

2 and 3 or : : 1: 2 : 3β = α γ = α α β γ = . 

 

 

2.4 Application of Thermal Expansion 
a) Thermometers: In thermometers, thermal expansion 

is used in temperature measurements. 
b) Removing tight lids: To open the cap of a bottle that 

is tight enough, immerse in hot water for a minute. 
So, Metal cap expands and becomes loose. It would 
now be easy to turn it open. 

c) Riveting: To join steel plates tightly together, red hot 
rivets are forced through holes in the plates. The ends 
of hot rivets is then hammered. On cooling, the rivets 
contract and bring the plates tightly gripped. 

d) Fixing metal tires on wooden wheels: Iron rims are 
fixed on wooden wheels of carts. Iron rims are 
heated. The thermal expansion allows them to slip 
over the wooden wheel. Water is poured on it to cool. 
The rim contracts and becomes tight over the wheel.  

e) Bimetallic Strip: A bimetal strip consists of two thin 
strips of different metals such as brass and iron joined 
together. On heating the strip, brass expands more 
than iron. This unequal expansion causes the bending 
of the strip. 

 
Fig. 14.10 

 

Bimetallic strips are used for various purposes. 
Bimetal thermometers are used to measure 
temperature, especially in furnaces and ovens. 
Bimetal strips are used in thermostats. A bimetal 
thermostat is used to control the temperature of the 
heater coil in an electric iron 

f) Thermostats: The thermostat is a heat-regulating 
device which works on the principle of thermal 
expansion. 

 

2.5 Thermal Strain & Thermal Stress 
When a metal rod whose ends are rigidly fixed so as to 
prevent the rod from expansion or contraction, undergoes a 
change in temperature, thermal strains and thermal stresses 
are developed in the rod. 
• If a rod of length  is heated by a temperature T∆ , 

then increase in length of rod should have been 
T∆ = α∆  . 
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But due to being fixed at ends rod does not expand 
and a compressive thermal strain is developed in it 
whose value is 

Thermal (compressive) strain T∆
= = α∆




 

Here, α = linear expansion coefficient of the material 
of rod.  

• Due to this strain, a thermal stress is developed in the 
rod. 
We know, 

V T compressive strain
V

∆
= α∆ =  

Also, Y L Thermal stress
L
∆

= σ =  

T Y Tσ = α∆  
where, Y = young’s modulus of elasticity. 

• Practical applications: Railway tracks, metal tyres of 
cart wheels, bridges and so many other applications. 

 

3. Calorimetry 
When two systems at different temperatures are connected 
together then heat flows from higher temperature to lower 
temperature till the time their temperatures do not become 
same.  
Note: 

Whenever heat is given to any body, either its 
temperature changes or its state changes. 

 
Change in Temperature 
When the temp changes on heating,  
Then, 
Heat supplied ∝ change in temperature ( )T∆  

                       ∝ amount of substance (m/n) 
                       ∝ nature of substance (s/C) 
           H ms T⇒ ∆ = ∆  
m mass of body=  

s specific heat capicity per kg=  

T change in temperature∆ =  
             or H nC T∆ = ∆  
n = Number of moles  
C = Specific/Molar heat Capacity per mole 
 
 
 
 
 

3.1 Mechanical Equivalent of Heat 
The mechanical equivalent of heat implies that motion and 
heat are interchangeable, and that a defined amount of work 
generates the same amount of heat in all situations if the 
work is completely converted to heat energy. 
The mathematical expression for the mechanical equivalent 
of heat is, 

WJ
q

=  

Where 
W = The amount of heat required to generate heat 
q = Amount of heat 
The SI unit of mechanical equivalent of heat is 
Joule/calorie. 

 
3.2 Thermal Heat Capacity 
Amount of heat required to raise the temperature of a system 
through one degree 

Q S T⇒ ∆ = ∆  
where S = Heat Capacity  
Units 
SI : J / K
Common : Cal / C°

 

 
Note: 

Materials with higher specific heat capacity 
require a lot of heat for same one degree rise in 
temperature. 

 
3.2.1 Molar Heat Capacity 
The amount of heat required to change the temperature of 
unit mole of substance by 1 C° is termed as its molar heat 
capacity, 

QC
T

=
µ∆

 

where, µ = number of moles = m/M 
 
• Types of molar specific heat capacity are as follows 

a) Molar specific heat capacity at constant pressure ( )pC

is expressed as P
p constant

QC
T =

∆ =  ∆ 
 

b) Molar specific heat capacity at constant volume ( )VC  

V
V constant

QC
T =

∆ =  ∆ 
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• Relation between specific heat and molar heat capacity 
can be expressed as C = Ms 
where, C = molar heat capacity, 
           M = molecular mass of the substance 
and        s = specific heat capacity 
Thermal stress = Y Thermalstrain Y T× = α∆  

Thermal stress Y T= α∆  
Here, Y = Young’s modulus of the material of given 
rod.  
If A be the cross-section area of the rod, then force 
exerted by the rod on the supports will be
F Y T A= α∆ .  

3.2.2 Specific Heat Capacity 
• The quantity of heat Q required to change the 

temperature of a mass m of certain material by T∆ , is 
approximately proportional to the product of m and 

T∆ , i.e.,  
Q m T
or Q ms T

∝ ∆
= ∆

 

where, s = specific heat capacity of the material. 
• Specific heat of ice is 500cal / kg C° and that of water 

is 1000cal / kg C° . 

 
Note: 

Specific heat capacity can have any value from 
0 to ∞ . For some substances under particular 
situations, it can have negative values also. 

 
3.2.3 Water Equivalent 
Water equivalent is the amount of water that would absorb 
the same amount of heat as the calorimeter per degree 
temperature increase. 
 

3.4 Latent Heat 
The amount of heat transferred per unit mass during the 
change of state of a substance without any change in its 
temperature is called latent heat of the substance for 
particular change. 
Q m

Q mL
∝

⇒ =
 

where, L = latent heat of the material.  
• There are two types of latent heat of materials 
a) Latent Heat of Fusion or Melting It is the quantity of 

heat required to change the state of a substance from 
solid to liquid state at its melting point. It is denoted by 

fL . 

Latent heat of fusion, 

f
QL
m

=  

Its SI unit is Jkg-1. 
b) Latent Heat of Vaporization It is the quantity of heat 

required to change the state of unit mass of a substance 
from liquid to vapour state at its boiling point. It is 
denoted by VL . 

Latent heat of vaporization, V
QL
m

= and its SI unit is 

Jkg-1. 
 

3.5 Calorimeter 
It is the branch of science which deals with the measurement 
of heat. 
Principle of calorimetry states that, neglecting heat loss to 
surroundings, heat lost by a body at higher temperature is 
equal to heat gained by a body at lower temperature. 
It is expressed as 
Heat lost by hotter body = Heat gained by colder body 
                          1 1 1 2 2 2m s T m s T∆ = ∆  
where, m1 = mass of hot body, 
            m2 = mass of cold body, 
            s1 = specific heat of hot body, 
           s2 = specific heat of cold body 
        1T∆ = change in temperature of hotter body 

and   2T∆ = change in temperature of colder body. 
 

3.6 Change of State 
• The process of converting one state of a substance 

into another state is known as change of state of a 
substance or matter. 

• Matter generally exists in three states 
(i) Solid           (ii) Liquid           (iii) Gas 

• These states can be changed into one another by 
absorbing heat or rejecting heat. The process is so 
called the change of state. The temperature of a 
substance remains constant during change of state. 

 
3.6.1 Triple Point of Water 
The values of pressure and temperature at which water 
coexists in equilibrium in all three states of matter, i.e., ice, 
water and vapour is called triple point of water. 
• Triple point of water is 273 K temperature and 0.46 

cm of mercury pressure. 
• For example 

Solid       


     Liq  Lf = Latent heat of fusion 
Liq          


    Gas  Lv =  Latent heat of vaporization 
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NOTE: 

In case any material is not at its B.P or M.P, 
then on heating the temperature will change till 
the time a particular state change temperature 
reaches. 
For Example: If water is initially at –50°C at 1 
Atm pressure in its solid state. 
On heating 
Step - 1 : Temperature changes to 0°C first  
Step - 2 : Ice melts to H2O(  ) keeping the 

temperature constant  
Step - 3 : Temperature increase to 100°C  
Step - 4 : H2O(  ) boils to steam keeping the 

temp constant  
Step - 5 : Further temperature increases. 

 
Fig. 14.11 

The slope is inversely proportional to heat 
capacity.  
Length of horizontal line depends upon mL for 
the process. 

 
 
3.6.2 Pressure Dependence on Melting Point 

and Boiling Point 
• For some substance melting point decreases with 

increase in pressure and for other melting point 
increases 

• Melting point increases with increase in pressure.  
 
We can observe the above results through phaser 
diagrams.  
 

 
Fig. 14.12 

Line AO → Sublimation curve 
Line OB → Fusion curve  
Line OC → Vaporization curve  
Point O → Triple Point  

Point C → Critical temperature 
 

• Triple Point: The combination pressure and 
temperature at which all three states of matter (i.e. 
solids, liquids and gases co-exist. 
For H2O it is at 273.16 K and 0.006 Atm. 

• Critical Point: The combination of pressure & temp 
beyond which a vapour cannot be liquified is called 
as critical point. 
Corresponding temperature, pressure are called as 
critical temperature & critical pressure. 

• From the phasor diagram, we can see that melting 
point decreases with increases in pressure for H2O.  

• Regelation: The phenomena of refreezing of water 
melted below the normal melting point due to 
increase in pressure. 

• It is due to this pressure effect on melting point that 
cooking is tough on mountains and easier in pressure 
cooker. 

 

4. Heat Transfer 
There are three modes of heat transfer 
• Conduction 
• Convection 
• Radiation 
 

5. Conduction & Convection 
 

5.1 Conduction 
 

5.1.1 Thermal 
Thermal conduction is the process in which thermal energy 
is transferred from the hotter part of a body to the colder one 
or from hot body to a cold body in contact with it without 
any transfer of material particles 
 

 
Fig. 14.13 

 

At steady state, the rate of heat energy flowing through the 
rod becomes constant. 
Then its rate (for uniform cross-sectional rod) 

( ) ( )C DT T
Q KA ... i

L
−

=  

where Q = Rate of heat energy flow (J/s or W) 
A = Area of cross-section (m2) 
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TC,TD = Temperature of hot end and cold end respectively 
(°C or K) 
L = Length of the rod (m)  
K = coefficient of thermal conductivity 
Coefficient of Thermal Conductivity: It is defined as 
amount of heat conducted during steady state in unit time 
through unit area of any cross-section of the substance under 
unit temperature gradient, the heat flow being normal to the 
area. 
Units 
SI → J/msK or W/mK. 

Note:
Larger the thermal conductivity, the greater will be rate of 
heat energy flow for a given temperature difference. 
Kmetals > Knon metals

Thermal conductivity of insulators is very low. Therefore, 
air does not let the heat energy to be conducted very easily 

• Temperature Gradient: The fall in temperature per
unit length in the direction of flow of heat energy is

called as Temperature Gradient i.e., C DT T
L
−

Units
SI → K/m
The term Q, (i.e.) rate of flow of heat energy can also
be named as heat current.
The term (L/KA) is called as thermal resistance of
any conducting rod.

• Thermal Resistance: Obstruction offered to the flow
of heat current by the medium
Units → K/W

5.1.2 Slabs in Parallel & Series 
• Slabs in Series (in steady state)

Consider a composite slab consisting of two materials
different thickness L1 and L2 different cross-sectional
area A1 and A2 and different thermal conductivities
K1 and K2. The temperature at the outer surface of the
slabs are maintained at TH and TC, and all lateral
surfaces are covered by an adiabatic coating.

Fig. 14.14 

Let temperature at the junction be T, since steady 
state has been achieved thermal current through each 
slab will be equal. Then thermal current through the 
first slab. 

H
H 1

1

T TQi or T T iR
t R

−
= = − =

and that through the second slab. 

C
C 2

2

T TQi or T T iR
t R

−
= = − =

adding eqn. 5.1 and eqn 5.2 

( ) H C
H C 1 2

1 2

T T
T T R R i or i

R R
−

− = + =
+

Thus these two slabs are equivalent to a single slab of 
thermal resistance R1 + R2. 
If more than two slabs are joined in series and are 
allowed to attain steady state, then equivalent thermal 
resistance is given by 

1 2 3R R R R ....= + + +  

• Slabs in Parallel

Fig. 14.15 

Consider two slabs held between the same heat 
reservoirs, their thermal conductivities K1 and K2 and 
cross-sectional area A1 and A2 

then 1 2
1 1 2 2

L LR ,R
K A K A

= =

thermal current through slab 1 

H C
1

1

T T
i

R
−

=

and that through slab 2 

H C
2

2

T T
i

R
−

=

Net heat current from the hot to cold reservoir 

( )1 2 H C
1 2

1 1i i i T T
R R

 
= + = − + 

 
 

Comparing with H C

eq

T T
i

R
−

= ,we get , 
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eq 1 2

1 1 1
R R R

= +

If more than two rods are joined in parallel, the 
equivalent thermal resistance is given by 

eq 1 2 3

1 1 1 1 ....
R R R R

= + + . 

5.1.3 Growth of Ice on Lake 
• Water in a lake starts freezing if the atmospheric

temperature drops below 0 C° . Let y be the thickness
of ice layer in the lake at any instant and atmospheric
temperature is C−θ° .

• The temperature of water in contact with lower
surface of ice will be zero.

• If A is the area of lake, heat escaping through ice in

time dt is 
( )

1
KA 0 dt

dQ
y

− −θ  = .

• Suppose the thickness of ice layer increase by dy in
time dt, due to escaping of above heat. Then

( )2dQ mL dyA L= − ρ .

Fig. 14.16 
• As 1 2dQ dQ= hence, rate of growth of ice will be

( ) ( )dy / dt K / Ly= θ ρ . So, the time taken by ice to

grow to a thickness y is 
y 2

0

L Lt ydy y
K 2K
ρ ρ

= =
θ θ∫ . 

• If the thickness is increased from y1 to y2 then time

taken ( )2 2
2 1

Lt y y
2K
ρ

= −
θ

. 

• Do not apply negative sign for putting values of
temperature in formula and also do not convert it to
absolute scale.

• Ice is a poor conductor of heat, therefore the rate of
increase of thickness of ice on ponds decreases with
time.

• It follows from the above equation that time taken to
double and triple the thickness, will be in the ratio of

2 2 2
1 2 3t : t : t ::1 : 2 : 3

i.e., 1 2 3t : t : t ::1: 4 : 9 .

5.2 Convection 
• The process in which heat is transferred from one

point to another by the actual movement of the heated
material particles from a place at higher temperature
to another place of lower temperature is called as
thermal convection.

• If the medium is forced to move with the help of a fan
or a pump, it is called as forced convection.

• If the material moves because of the differences in
density of the medium, the process is called natural or
free convection.

Examples of forced convection: 
Circulatory system, cooling system of an automobile heat 
connector 
Examples of natural convection: 
Trade winds, Sea Breeze/Land Breeze, Monsoons, Burning 
of Tea. 

6. Radiation
Radiation is energy that comes from a source and travels 
through space at the speed of light. This energy has an 
electric field and a magnetic field associated with it, and has 
wave-like properties. You could also call radiation 
“electromagnetic waves”.  
Also, this mode of heat transfer, does not need medium to 
travel. 

6.1 Theory of Exchange 
According to this theory, all bodies radiate thermal radiation 
at all temperatures. The amount of thermal radiation radiated 
per unit time depends on the nature of the emitting surface, 
its area and its temperature. The rate is faster at higher 
temperatures. Besides, a body also absorbs part of the 
thermal radiation emitted by the surrounding bodies when 
this radiation falls on it.  
If a body radiates more than what is absorbs, its temperature 
falls. If a body radiates less than what it absorbs, its 
temperature rises. And if the temperature of a body is equal 
to the temperature of its surroundings it radiates at the same 
rate as it absorbs. 

6.2 Ideal Black Body & Black Body 
Radiation 

A perfectly black body is one which absorbs all the heat 
radiations of whatever wavelength, incident on it. It neither 
reflects nor transmits any of the incident radiation and 
therefore appears black whatever be the colour of the 
incident radiation. 
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Fig. 14.17 

In actual practice, no natural object possesses strictly the 
properties of a perfectly black body. But the lamp-black and 
platinum black are good approximation of black body. They 
absorb about 99% of the incident radiation. The most simple 
and commonly used black body was designated by Ferry. It 
consists of an enclosure with a small opening which is 
painted black from inside. The opening acts as a perfect 
black body. Any radiation that falls on the opening goes 
inside and has very little change of escaping the enclosure 
before getting absorbed through multiple reflections. The 
cone opposite to the opening ensures that no radiation is 
reflected back directly. 
 
6.2.1 Absorption, Reflection & Emission of 

Radiations 
r t aQ Q Q Q= + +  

t ar Q QQ1
Q Q Q

⇒ = + +  

1 r t a⇒ = + +  
where r = reflecting power, a = absorptive power\ 
amd    t = transmission power. 
(i)   r = 0, t = 0, a = 1, perfect black body 
(ii)  r = 1, t = 0, a = 0, perfect reflector 
(iii) r = 0, t = 1, a = 0, perfect transmitter 
 

 
Fig. 14.18 

 

• Absorptive Power: In particular absorptive power of 
a body can be defined as the fraction of incident 
radiation that is absorbed by the body. 

Energy absorbeda
Energy incident

=  

As all the radiations incident on a black body are 
absorbed, a = 1 for a black body. 

• Emissive power: Energy radiated per unit time per 
unit area along the normal to the area is knonw as 
emissive power. 

• Spectral Emissive power ( Eλ ): Emissive power per 

unit wavelength range at wavelength λ is spectral 
emissive power, they are related as follows, 

0

dEE E d and E
d

∞

λ= λ = λ
λ∫ . 

• Emissivity:  

0

Emissive power of a body at temperature Te
Emissive power of a black abody at same temperature T
E
E

=

=

 

 

6.3 Kirchhoff’s Law of Thermal 
Radiation 

The ratio of the emissive power to the absorptive power for 
the radiation of a given wavelength is same for all 
substances at the same temperature and is equal to the 
emissive power of perfectly black body 

( )
( ) ( )

E body
E black body

a body
=  

Note: 

Hence, we can conclude that good emitters are also good 
absorbers. 

 

6.4 Stefan’s Law 
According to this law, the emissive power of a perfectly 
black body (energy emitted by a black body per unit surface 
area per unit time) is directly proportional to the fourth 
power of its absolute temperature. 
Mathematically, 4E T∝  
or                        4E T= σ  
where, σ is a constant known as the Stefan’s constant. Value 

of σ is 8 2 45.67 10 Wm K− − −× . 
• The total radiant energy Q emitted by a body of 

surface area A in time t is given by 
4Q Ate At T= = εσ  

• The radiant power (P), i.e. energy radiated by a body 
per unit time is given by 

4QP A T
t

= = εσ . 

• If a body at temperature T is surrounded by another 
body at temperature T0 (where, T0 < T), then Stefan’s 
law is modified as 
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( )4 4
0E T T= σ −  

and ( )4 4
0e T T= εσ − . 

 

6.5 Newton’s Law of Cooling 
Newton’s Law of cooling states that, the rate of loss of heat

dQ
dt

− 
 
 

 of the body is directly proportional to the difference 

of temp between body and surrounding. 

Now, ( )2 1
dQ k T T
dt

−
= −  

where k is a positive constant depending upon area and 
nature of the surface of the body.  
Suppose a body of mass m, specific heat capacity s is at 
temperature T2 & T1 be the temperature of surroundings, if 
dT the fall of temperature in time dt. 
Amount of heat lost is 
dQ = msdT 
∴ Rate of loss of heat is given by 
dQ dTms
dt dt

=  

From above equations 

( )2 1
dTms k T T
dt

− = −  

2 1

dT k dt Kdt
T T ms

−
⇒ = = −

−
 

where kK
ms

=  

On integrating  
( )2 1log T T Kt C− = − +  

Kt C
2 1 1 1or T T C e where C e−= + =  

Thus, above equation enables you to calculate the time of 
cooling of a body through a particular range of temperature. 

 
Fig. 14.19 

NOTE: 

For small temperature differentiation, the rate of cooling, 
due to conduction, convection & radiation combined is 
proportional to difference in temperature 

 

Approximation: If a body cools from Ta to Tb in t times in 
medium where surrounding temp is T0 , then

a b a b
0

T T T T
K T

t 2
− + = − 

 
. 

Newton’s Law of cooling can be verified experimentally 
 

 
Fig. 14.20 

 

Set Up: A double walled vessel (v) containng water in 
between two walls. 
A copper calorimeter (C) containing hot water placed inside 
the double walled vessel. Two thermometers through the 
lids are used to note the temperature T2 of H2O in 
calorimeter and T1 of water in between the double walls 
respectively. 
Experiment: The temperature of hot water in the 
calorimeter after equal intervals of time. 
Result: A graph is plotted between log (T2 – T1) and time 
(t). The nature of the graph is observed to be a straight line 
as it should be from Newton’s law of cooling. 
 

6.6 Wien’s Displacement Law 
From the energy distribution curve of black body radiation, 
the following conclusions can be drawn: 
a) The higher the temperature of a body, the higher is 

the area under the curve i.e., more amount of energy 
is emitted by the body at higher temperature. 

b) The energy emitted by the body at different 
temperatures is not uniform. For both long and short 
wavelengths, the energy emitted is very small. 

c) For a given temperature, there is a particular 
wavelength ( )mλ for which the energy emitted ( )Eλ

is maximum. 
d) With an increase in the temperature of the black 

body, the maxima of the curves shift towards shorter 
wavelengths. 
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Fig. 14.21 

 

From the study of energy distribution of black body 
radiation discussed as above, it was established 
experimentally that the wavelength ( )mλ corresponding to 

maximum intensity of emission decreases inversely with 
increase in the temperature of the black body. i.e., 

m m
1 or T b
T

λ ∝ λ =  

This is called Wien’s displacement law. 
Here b = 0.282 cm-K, is the Wien’s constant. 
 

6.7 Solar Constant 
• A solar constant is a measurement of the solar 

electromagnetic radiation available in a meter squared 
at Earth’s distance from the sun. The solar constant is 
used to quantify the rate at which energy is received 
upon a unit surface such as a solar panel. In this 
context, the solar constant provides a total 
measurement of the sun’s radiant energy as it is 
absorbed at a given point. 

• Solar constants are used in various atmospheric and 
geological sciences. Though called a constant, the 
solar constant is merely relatively constant. The 
relative constant does vary by 0.2% in a cycle that 
peaks once every eleven years. The constant is rated 
at a solar minimum of 1.361 kW/m2 and a solar 
maximum of 1.362. 
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NCERT Corner 
(Some Important Points to Remember) 
 

1. Heat is a form of energy that flows between a body and 
its surrounding medium by virtue of temperature 
difference between them. The degree of hotness of the 
body is quantitatively represented by temperature. 
 

2. A temperature-measuring device (thermometer) makes 
use of some measurable property (called thermometric 
property) that changes with temperature. Different 
thermometers lead to different scales. To construct a 
temperature scale, two fixed points are chosen and 
assigned some arbitrary values of temperature. The two 
numbers fix the origin of the scale and the size of its 
unit. 
 

3. The Celsius temperature (tC) and the Fahrenheit 
temperature (tV) are related by ( )V Ct 9 / 5 t 32= + . 

4. The ideal gas equation connecting pressure (P), volume 
(V) and absolute temperature (T) is: PV RT= µ where 

µ is the number of moles and R is the universal gas 
constant. 
 

5. In the absolute temperature scale, the zero of the scale 
is the absolute zero of temperature the temperature 
where every substance in nature has the least possible 
molecular activity. The Kelvin absolute temperature 
scale (T) has the same unit size as the Celsius scale 
(TC), but differs in the origin: CT T 273.15= − . 
 

6. The coefficient of linear expansion ( )tα and volume 

expansion ( )vα are defined by the relations: 

t T∆
= α ∆





 

V
V T

V
∆

= α ∆  

where ∆ and V∆ denote the change in length  and 
volume V for a change of temperature T∆ .The relation 
between them is : V t3α = α . 
 
 
 
 
 

 
 
 
 

7. The specific heat capacity of a substance is defined by 
1 Qs
m T

∆
=

∆
. 

where m is the mass of the substance and Q∆ is the heat 

required to change its temperature by T∆ . The molar 
specific heat capacity of a substance is defined by 

1 QC
T

∆
=

µ ∆
 

where µ is the number of moles of the substance. 
 

8. The latent heat of fusion (Lf) is the heat per unit mass 
required to change a substance from solid into liquid at 
the same temperature and pressure. The latent heat of 
vaporization (Lv) is the heat per unit mass required to 
change a substance from liquid to the vapour state 
without change in the temperature and pressure. 
 

9. The three modes of heat transfer are conduction, 
convection and radiation. 
 

10. In conduction, heat is transferred between neighbouring 
parts of a body through molecular collisions, without 
any flow of matter. For a bar of length L and uniform 
cross section A with its ends maintained at temperatures 
TC and TD, the rate of flow of heat H is: 

C DT T
H KA

L
−

= . 

where K is the thermal conductivity of the material of 
the bar. 
 

11. Newton’s Law of Cooling says that the rate of cooling 
of body is proportional to the excess temperature of the 
body over the surroundings: 
where T1 is the temperature of the surrounding medium 
and T2 is the temperature of the body. 

12. Emissivity of a body at a given temperature is equal to 
the ratio of the total emissive power of the body ( )eλ to 

the total emissive power of perfectly black body ( )Eλ

at that temperature. Emissivity, e
E

E
λ

λ
=  

 
 
 
 



  THERMAL PHYSICS 

13. Perfectly Black Body: A body which absorbs 
completely the radiations of all wavelengths incident on 
it, is called a perfectly black body. For a perfectly black 
body, emissive power ( )E 1λ = . 

Lamp black is 96% black and platinum black is about 
98% black. 
 

14. Kirchhoff’s Law of Radiation: This law states that, the 
ratio of emissive power to absorptive power is same for 
all surfaces at the same temperature and is equal to the 
emissive power of a perfectly black body at that 

temperature. Mathematically, 1 2

1 2

e e ... E
a a

= = = . 

15. Stefan’s Law: According to this law, the emissive 
power of perfectly black body (energy emitted by a 
black body per unit surface area per unit time) is 
directly proportional to the fourth power of its absolute 
temperature. 
Mathematically, 4E T= σ  
where σ is a constant known as the Stefan’s constant. 

Value of σ is 8 2 45.67 10 Wm K− − −× . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

16. Wien’s Displacement Law: This law states that as 
temperature of black body T increase, the wavelength 

mλ corresponding to the maximum emission decreases 

such that m
1
T

λ ∝  or mT bλ = . 

where, b is known as Wien’s constant and its value is 
32.89 10 m K−× − . 
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Kinetic Theory of Gases and Thermodynamics 
 

1.  Kinetic Theory of Gases 
1.1  Introduction to Kinetic Theory of 

Gases: 
In this topic, we discuss the behaviour of gases and how 
are the various state variable like P, V, T, moles, U etc are 
interrelated with each other 

1.1.1 Postulates of Kinetic Theory of Gases 
• A gas consists of a very large number of molecules 

(of the order of Avogadro’s number, 1023), which are 
perfect elastic spheres. For a given gas they are 
identical in all respects, but for different gases, they 
are different. 

• The molecules of a gas are in a state of incessant 
random motion. They move in all directions with 
different speeds., (of the order of 500 m/s) and obey 
Newton’s laws of motion. 

• The size of the gas molecules is very small as 
compared to the distance between them. If typical 
size of molecule is 2Å, average distance between the 
molecules is 320Å. Hence volume occupied by the 
molecules is negligible in comparison to the volume 
of the gas. 

• The molecules do not exert any force of attraction or 
repulsion on each other, except during collision. 

• The collisions of the molecules with themselves and 
with the walls of the vessel are perfectly elastic. As 
such, that momentum and the kinetic energy of the 
molecules are conserved during collisions, though 
their individual velocities change. 

• There is no concentration of the molecules at any 
point inside the container i.e. molecular density is 
uniform throughout the gas. 

• A molecule moves along a straight line between two 
successive collisions and the average straight 
distance covered between two successive collisions is 
called the mean free path of the molecules. 

• The collisions are almost instantaneous, i.e., the time 
of collision of two molecules is negligible as 
compared to time interval between two successive 
collisions. 

 
1.2 Pressure Calculation 

1.2.1 Pressure of an Ideal Gas and Its 
 Expression 

Pressure exerted by the gas is due to continuous 
bombardment of gas molecules against the walls of the 
container. 

Expression: 

Consider a gas enclosed in a cube of side l. Take the axes 
to be parallel to the sides of the cube, as shown in figure. 
A molecule with velocity ( )x y zv , v , v  hits the planar 

wall parallel to yz-plane of area A (= l2). Since the 
collision is elastic, the molecule rebounds with the same 
velocity; its y and z components of velocity do not 
change in the collision but the x-component reverses 
sign. That is, the velocity after collision is 

( )x y zv , v , v .−  The change in momentum of the 

molecule is: ( )x x xmv mv 2mv .− − = −  By the principle 

of conservation of momentum, the magnitude of 
momentum imparted to the wall in the collision = 2mvx. 

 

Fig 15.1 

To calculate the force (and pressure) on the wall, we need 
to calculate momentum imparted to the wall per unit 
time, if it is within the distance xv Vx ∆t from the wall, 

that is, all molecules within the volume. xAv t∆ only can 

hit the wall in time ∆T is x
1 A v t n,
2

∆  where n is the 

member of molecules per unit volume. The total 
momentum transferred to the wall by these molecules in 



  Kinetic Theory of Gases and Thermodynamics 
 

 

time ∆t is: ( )x x
1Q 2mv nAv t .
2

 = ∆ 
 

 The force on the 

wall is the rate of momentum transfer Q/∆t and pressure 
is force per unit area: 

( )
2
x

QP nmv
A t

= =
∆

 

Actually, all molecules in a gas do not have the same 
velocity; there is a distribution in velocities. The above 
equation therefore, stands for pressure due to the group 
of molecules with speed vx in the x-direction and n stands 
for the number density of that group of molecules. The 
total pressure is obtained by summing over the 
contribution due to all groups: 

2
xP nmv=


 

where 
2
xv


 is the average of 2
xv .  Now the gas is isotropic, 

i.e. there is no preferred direction of velocity of the 
molecules in the vessel. Therefore by symmetry, 

2 2 2
x y zv v v= =
  

 

( )2 2 2 2 2
x x y z

1 1v v v v v
3 3

   = + + =   
   

    

 

where v is the speed and 
2

v


 denotes the mean of the 
squared speed. Thus 

21P nmv
3

 =  
 



 

2 21 1 M 1P mnv v
3 3 V 3

= = = ρ
 

 

M = Total mass of gas molecules 

V = Total volume of gas molecules 

1.2.2 Relation Between Pressure and KE of Gas 
Molecules 

From equation 
21P v

3
= ρ



 

22 1P Mv
3V 2

− ⇒ =  
 

 

2 K.EP
3 V

⇒ =  

2P E
3

⇒ =  

Pressure exerted by an ideal gas is numerically equal to two 
third of mean kinetic energy 

1.3  Ideal Gas Law’s: 
• Ideal Gas 

That gas which strictly obeys the gas laws, (such as Boyle’s 
Law, Charles’, Gay Lussac’s Law etc.) 

Characteristics 

1. The size of the molecule of an ideal gas is zero. 

2. There is no force of attraction or repulsion amongst the 
molecules of an ideal gas. 

• Real Gas 
All gases are referred to as real Gases. All real gas near 
the ideal gas behavior at low pressures and 
temperatures high enough, where they cannot be 
liquified. 

Gay Lussac’s Law: 

We know that 2PV NK
3

=


 

where K


 is the average kinetic energy of translation per gas 
molecule. At constant temperature. K



 is constant and for a 
given mass of the gas. N is constant. 

Thus, PV = constant for given mass of gas at constant 
temperature, which is also called Boyle’s Law. 

Charle’s Law: 

We know that 2PV NK
3

=


 

For a given mass of gas, N is constant. 

Since B
3K k T, K T
2

= ∝
 

 and as such PV T.∝  

If P is constant, V T,∝  which is the Charles’ Law. 

Constant Volume Law: 

We know that 2PV NK
3

=


 

For a given mass of gas, N is constant. Since

B
3K k T, K T
2

= ∝
 

 

Thus, PV T∝  

If V is constant, P T,∝  which the constant volume law. 

Avogadro’s Law: 

Consider two gases 1 and 2. We can write

1 21 1 1 2 2 2
2 2P V N K , P V N K
3 3

= =
 

 



  Kinetic Theory of Gases and Thermodynamics 

If their pressures, volumes and temperatures are the same, 
then 

1 21 2 1 2P P , V V , K K .= = =
 

 

Clearly, N1 = N2 Thus: 

Equal volumes of all ideal gases existing under the same 
conditions of temperature and pressure contain equal 
number of molecules which is Avogadro’s Law or 
hypothesis. 

This law is named after the Italian physicist and chemist, 
Amedeo Avogadro (1776 – 1856). 

Alliter: As B
B

PVPV Nk T, N
k T

= =  

If P, V and T are constants, N is also constant. 

1.4  Ideal Gas Equation  

As 2PV NK
3

=


 and B
3K k T
2

=


 

B
2 3PV N k T
3 2

 =  
 

 or BPV Nk T=  

which is the ideal gas equation 

1.5  Real Gas Equation and Related 
 Concepts  
Real Gas Definition: A real gas is defined as a gas that at 
all standard pressure and temperature conditions does not 
obey gas laws. It deviates from its ideal behavior as the gas 
becomes huge and voluminous. True gases have velocity, 
mass, and volume. They liquefy when cooled to their boiling 
point. The space filled by gas is not small when compared to 
the total volume of gas.  

Ideal and Real Gas Equation An ideal gas is defined as a gas 
that obeys gas laws at all pressure and temperature 
conditions. Ideal gases have velocity as well as mass. They 
have no volume. The volume taken up by the gas is small as 
compared to the overall volume of the gas. It does not 
condense, and triple-point does not exist.  

The ideal gas law is the equation of the state of a 
hypothetical ideal gas, also called the general gas equation. 
Under many conditions, it is a reasonable approximation of 
the behavior of several gases, but it has many limitations. In 
1834, Benoit Paul Emile Clapeyron first described it as a 
variation of the empirical law of Boyle, the law of Charles, 
the law of Avogadro, and the law of Gay-Lussac. In an 
empirical form, the ideal gas law is also written: 

PV nRT=  

 

Real Gas Law 

By explicitly including the effects of molecular size and 
intermolecular forces, the Dutch physicist Johannes van der 
Waals modified the ideal gas law to explain the behavior of 
real gases. The Vander Waal real gas equation is given 
below. 

Real gas law equation, 

( )
2

2

n aP V nb nRT
V

 
+ − = 

 
 

Where a and b represent the empirical constant which is 
unique for each gas. 

2

2

n
V

represents the concentration of gas. 

P represents pressure 

R represents a universal gas constant and T is the 
temperature. 

Difference Between Ideal and Real Gases 

The table below shows the properties and the behaviour of 
ideal and real gases. 

Ideal Gas Real Gas 

No definite volume Definite volume  

Elastic collision of 
particles 

Non-elastic collisions 
between particles 

No intermolecular 
attraction force 

Intermolecular attraction 
force 

Does not really exist in the 
environment and is a 
hypothetical gas 

It really exists in the 
environment  

High pressure The pressure is less when 
compared to ideal gas 

Independent Interacts with others 

Obeys PV NRT=  Obeys 

( )
2

2

n aP V nb nRT
V

 
+ − = 

 
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2. Speeds of Gas Molecules 
Maxwell’s speed Distribution Law, average, RMS and most 
Probable Speeds. 

Molecule Nature of Matter: Same as Atomic Theory given 
by Dalton, according to him, atoms are the smallest 
constituents of elements. All atoms of one element are 
identical, but atoms of different element are different. 

In solids: Atoms are tightly packed, interatomic spacing 
about 1A°. Interatomic force of attraction are strong. 

In liquids: Atoms are not as rigidly fixed as in solids. 
Interatomic spacing is about the same 2Å. Interatomic force 
a attraction are relative weaker. 

In Gases: Atoms are very free. Inter atomic spacing is about 
tens of Angstroms. Interatomic forces are much weaker in 
gases than both in solids and liquids. 

In this chapter, we mainly focus on gases 

2.1  Maxwell’s Law of Distribution of 
 Molecular Velocities 

Assumptions of Maxwell Distribution 

• Molecules of all velocities between 0 to ∞ are 
present. 

• Velocity of one molecule, continuously changes, 
though fraction of molecules in one range of 
velocities is constant. 
Result 

23/2 mv
2k T2 B

v
B

MN 4 N V e
2 k T

− 
= π  π 

 

where v
v

dN
N

dV
=  

where dNv = Total number of molecules with speeds 
 between V and V + dV 

          N = Total number of molecules. 

 
Fig 15.2 

Based on this we define three types of speed for molecules of 
gas 

( )
1/21/22 2

rms
1V V V dNv
N

 = =   ∫


 

rms
3RTV
M

=  

Where M = Molecular Mass of Gas 

Similarly, av v
1V V VdN
N

= = ∫


 

8RT
M

=
π

 

But VMP is velocity at which vdN
0

dv
=  

MP
3RTV
M

⇒ =  

Physically VMP is velocity possessed by Maximum number of 
molecules. 
NOTE: 

 

rms av MPV V V> >  
 

3.  Energy of Gas Molecules 
3.1 Degrees of Freedom 
The number of degrees of freedom of a dynamical system is 
defined as the total number of co-ordinates or independent 
quantities required to describe completely the position and 
configuration of the system. 
Example: 

• A particle moving in straight line, say along X-axis 
need only x coordinate to define itself. It has only 
one degree of freedom. 

• A particle in a plane, needs 2 co-ordinates, hence has 
2 degrees of freedom. 
In general if 
A = number of particles in the system 
R = number of independent relations among the 
particles 
N = Number of degrees of freedom of the system 
N = 3A – R 

Monoatomic Gases: 
The molecules of a monoatomic gas (like neon, argon, 
helium etc) consists only of one atom. 
∴ A = 1 
R = 0 
∴ N = 3 
Here 3 degrees of freedom are for translational motion 
 
Diatomic Gases 
A = 2 
Assuming the distance between the two molecules is fixed 
then R = 1 
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N 3 2 1 5⇒ = × − =  
Here 5 degrees of freedom implies combination of 3 
translational energies and 2 rotational energies. 
 

   

  

 
Fig 15.3 

If vibrational motion is also considered then [only at very 
high temperatures] 
N = 7 
where 3 for translational 
2 for rotational 
2 for vibrational 
Triatomic Gas 

 
Fig 15.4 

Linear 
A = 3 
R = 2 
⇒ N = 3 × 3 – 2 = 7 
Non-Linear 

 
Fig 15.5 

A = 3 
R = 3 ⇒ N = 3 × 3 – 3 = 6 
• Here again vibrational energy is ignored. 

Polyatomic Gas 

A polyatomic gas has 3 translational, 3 rotational degrees of 
freedom. Apart from them if there V vibrational modes then 
there will be additional 2V vibrational degrees of freedom. 

∴ Total degree of freedom 

n = 3 + 3 + 2V = 6 + 2V 

3.2 Internal Energy and Kinetic 
 Energy 

Internal Energy: As studied in thermodynamics, Internal 
Energy of any substance is the combination of Potential 
Energies and Kinetic Energies of all molecules inside a 
given gas. 

• In real gas 
Internal Energy = P.E of molecules + K.E of 
Molecules 

• In real gas: Internal Energy = K.E of Molecules 
Here PE of molecules is zero as assumed in Kinetic 
theory postulates; There is no interaction between the 
molecules hence its interactional energy is zero. 

Average KE per Molecule of the Gas:  

We know, 
21 MP v

3 V
=



 

21PV Mv
3

⇒ =


 

Hence, 
21nRT Mv

3
=



 

21nRT Nmv
3

⇒ =


 

2n 3RT 1 mv
N 2 2

⇒ =


 

Also AN nN=  

2

A

3 R 1T mv
2 N 2

⇒ =


 ( )B avg

3 K T K.E
2

⇒ =  

Average KE of translation per molecule of the gas B
3 K T
2

 

Kinetic Interpretation of Temperature 
From above equations, we can easily see that KE of one 
molecule is only dependent upon its temperature. 
⇒ KE of molecule will cease if, the temperature of the gas 
molecules become absolute zero. 
∴ Absolute zero of a temperature may be defined as that 
temperature at which the root mean square velocity of the 
gas molecule reduces to zero. 
All the Ideal gas laws can be derived from Kinetic Theory of 
gases. 
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3.3 Law of Equipartition of Energy 
Statement: According to this law, for any dynamical system 
in thermal equilibrium, the total energy is distributed equally 
amongst all the degrees of freedom, and the energy 
associated with each molecule per degree of freedom is 

B
1 k T,
2

 where kB is Boltzman constant and T is temperature 

of the system. 

Application: Bk TU f
2

=  where f = Total degrees of 

freedom. This law is very helpful in determining the total 
internal energy of any system be it monatomic, diatomic or 
any polyatomic. Once the internal energy is know we can 
very easily predict Cv and Cp for such systems. 
Remark: In case vibrational motion is also there in any 
system, say for diatomic molecule, then there should be 
energy due to vibrational as well given by

2
2

v
1 dy 1E m ky
2 dt 2

 = + 
 

 

where dy
dt

=  vibrational velocity and 
2ky

2
=  Energy due to 

configuration. 

According to Law of Equipartition 

Energy per degree of freedom B
1 k T
2

=  

⇒ Total energy B B B
1 1k T k T k T
2 2

= + =  is energy for 

complete one vibrational mode 

3.4 Specific Heat of Gases 

Specific Heat Capacity: 

As we know the law of equipartition, we can predict the heat 
capacity of various gases. 

Monoatomic Gas 

Degree of freedom = 3. 

∴ Average Energy of a molecule at temperature T 

B
1E 3 k T
2

 ⇒ =  
 

 

Energy for one mole AE N⇒ ×  

( )B A
3U k N T
2

⇒ =  

3U RT
2

⇒ =  

In thermodynamics, we studied 

V
V

Q UC
T T

∆ ∆= =∆ ∆
          [⸪ W = 0 for constant V]

v
3RC
2

⇒ =  

p
5RC
2

∴ =  and p

v

C 5 .
C 3

γ = =  

Diatomic Gases 

When no vibration 

Degree of freedom = 5 

Average energy for one mole 5 RT
2

=  

v
U 5C R
T 2

∆
∴ = =

∆
 

p
7RC
2

=  

p

v

C 7
C 5

γ = =  

When vibration is present. 

There is only one mode of vibration between 2 molecules. 

∴ Degree of freedom = 7 

7U RT
2

∴ =  

v
7C R
2

⇒ = and p
9C R
2

=  

and 9
7

γ =  

Polyatomic Gases 

Degree of freedom 

= 3 for translational 

+ 3 for rotational 

+ 2V for vibrational 

= 6 + 2V 

If v = Number of vibrational modes 

( ) RTU 6 2V K
2

∴ = +  

( )vC 3 V R⇒ = +  

( )pC 4 V R= +  

and 4 V
3 V

+
γ =

+
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Specific Heat Capacity of Water 

Water is treated like solid. 

Water has three atoms, 2 of hydrogen and one of oxygen 

∴ Total degree of freedom for every atom 

= 3 × 2 = 6 

∴ Total degree of freedom for every molecule of water 

= 3 × 6 = 18 

118 R T
Q U 2C
T T T

 × ∆ ∆ ∆  ∴ = = =
∆ ∆ ∆

 

C 9R=  

Specific Heat Capacity of Solids 

• In solids, there is very less difference between heat 
capacity at constant pressure and at that constant 
volume. Therefore we do not differentiate between 
Cp and Cv for solids. 

Q UC
T T

∆ ∆
∴ = =

∆ ∆
 

{As solids hardly expand or expansion is negligible} 
Now in solid the atoms are arranged in an array 
structure and they are not free to move independently 
like in gases. 
Therefore the atoms do not possess any translational 
or rotational degree of freedom. 
On the other hand, the molecules do possess 
vibrational motion along 3 mutually perpendicular 
directions. 
Hence for 1 mole of a solid, there are NA number of 
atoms. The energy associated with every molecule 

B B
13 2 k T 3K T
2

 = × =  
 

∴ U = 3 RT for one mole 
Q UC 3R
T T

∆ ∆
∴ = = =

∆ ∆
 

• The above equation is called as Dulong and Petit’s 
Law. 

• At low temperatures the vibrational mode may not be 
that active hence, heat capacity is low at low 
temperatures for solids. 

 
Fig 15.6 

3.5 Mean Free Path  
The path traversed by a molecule between two successive 
collisions with other molecule is called the mean free path 

Total distance travelled by a molecule
No. of collisions it makes with other molecules

=


l

Expression: 
Mean Free Path 

 
Fig 15.7 

Suppose the molecules of a gas are spheres of diameter d. 
Focus on a single molecule with the average speed V.



 It 
will suffer collision with any molecule that comes within a 
distance d between the centres. In time ∆t, it sweeps a 
volume 2d V tπ ∆



 wherein any other molecule will collide 
with it (as shown in figure). If n is the number of molecules 
per unit volume, the molecule suffers 2n d V tπ ∆



 collisions 

in time ∆t. thus the rate of collisions is 2n d Vπ


 or the time 
between two successive collisions is on the average.

( )2

1
n V d

τ =
π


 

The average distance between two successive collisions, 
called the mean free path l, is: 

( )2

1V τ
nπd

= =


l  

In this derivation, we imagined the other molecules to be at 
rest. But actually all molecules are moving and the collision 
rate is determined by the average relative velocity of the 
molecules. Thus we need to replace V



 by 2V


 in equation. 
A more exact treatment. 

( )2

1
2n d

=
π



  

Result 

( )2

1
2nπd

=


l  
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for N molecules PV = NKBT 

B

N Pn
V K T

⇒ = =  

B
2

K T
2 d P

=
π




 

NOTE: 
Mean free path depends inversely on the number density 
and size of the molecule. 

4. Thermodynamics 
4.1  Introduction to Thermodynamics 

It is the study of interrelations between heat and other forms 
of energy 

Thermodynamic System: A collection of large number of 
molecules of matter (solid, liquid or gas) which are so 
arranged that these possess certain values of pressure, 
volume and temperature forms a thermodynamic system. 

• The parameters pressure, volume, temperature, 
internal energy etc which determine the state or 
condition of system are called thermodynamic state 
variables. 

• In thermodynamics we deal with the thermodynamic 
systems as a whole and study the interaction of heat 
and energy during the change of one thermodynamic 
state to another. 

Thermal Equilibrium  
The term ‘equilibrium’ in thermodynamics implies the state 
when all the macroscopic variables characterising the 
system (P, V, T, mass etc) do not change with time. 
• Two systems when in contact with each other come 

to thermal equilibrium when their temperatures 
become same. 

• Based on this is zeroth law of thermodynamics. 
According to zeroth law, when the thermodynamic 
systems A and B are separately in thermal 
equilibrium with a third thermodynamic system C, 
then the systems A and B are in thermal equilibrium 
with each other also. 

4.2 Basic Terms of Thermodynamics 
State Variables: P, V, T, no. of moles and internal energy 
They can be extensive or intestive. 
Equation of State: The equation which connects the 
pressure (P), the volume (V) and absolute temperature (T) of 
a gas is called the equation of state. 
PV = constant          (Boyle’s law) 
V cons tan t
T

=           (Charle’s law) 

⇒ PV = nRT 
Thermodynamic Process: A thermodynamic process is 
said to take place when some changes occur in the state of a 
thermodynamic system, i.e., the thermodynamic parameters 
of the system change with time. Types of these 
thermodynamic process are Isothermal, Adiabatic, Isobaric 
and Isochoric. 
Quasi Static Process: A thermodynamic process which is 
infinitely slow is called as quasi-static process. 
• In quasi static process, system undergoes change so 

slowly, that at every instant, system is in equilibrium, 
both thermal and mechanical, with the surroundings. 

• Quasi-static process is an idealised process. We 
generally assume all the processes to be quasistatic 
unless stated. 

Indicator or P-V, Diagram: A graph between pressure and 
volume of a gas under thermodynamic operation is called P-
V. diagram. 

 
Fig 15.8 

a → Isobaric 
b → Isothermal 
c → Adiabatic 
d → Isochoric 
Area under P – V diagram gives us work done by a gas. 
 

4.3 Heat, Work Done and Internal 
 Energy of Gas 
Internal Energy is the energy possessed by any system due 
to its molecular K.E. and molecular P.E. Here K.E and PE 
are with respect to centre of mass frame. This internal 
energy depends entirely on state and hence it is a state 
variable. For a real gases internal energy is only by virtue of 
its molecular motion. 

nfRTU
2

=  for ideal gases where 

n = number of moles 
f = Degree of freedom 
R = Universal Gas Constant 
T = Temperature in Kelvin 
Internal Energy can be change either by giving heat energy 
or by performing some work. 
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Heat Energy is the energy transformed to or from the system 
because of the difference in temperatures by conduction, 
convection or radiation. 
The energy that is transferred from one system to another by 
force moving its point of application in its own direction is 
called work. 

 
Fig 15.9 

Work done by the system F dx= ∫  

                                          sP Adx= ∫  

                                          sP dV= ∫  

Where Ps is the Pressure of system on the piston. This work 
done by system is positive if the system expands and it is 
negative if the system contracts. 
• Work and Heat are path functions whereas internal 

energy is a state function. 
• Heat and work are two different terms through they 

might look same. 

5. First Law of 
 Thermodynamics 

The first law of thermodynamics is a thermodynamics-
adapted version of the law of conservation of energy. In 
principle, the conservation law asserts that an isolated 
system's total energy remains constant; energy can be 
transferred from one form to another, but it cannot be 
created or destroyed. 

The first law states that the change in internal energy of the 
system ( U∆  system) is equal to the difference between the 
heat provided to the system (Q) and the work (W) done by 
the system on its surroundings in a closed system (i.e., there 
is no transfer of matter into or out of the system). 

systemU Q W∆ = −  

5.1 Relation of Heat and Internal 
 Energy 

Let ∆Q = Heat supplied to the system by the surroundings 

∆W = Work done by the system on the surroundings 

∆U = Change in internal energy of the system. 

First law of thermodynamics states that energy can neither 
be created nor be destroyed. It can be only transformed from 
one form to another. 

Mathematically: ∆Q = ∆U + ∆W 

Sign Conventions: 

• When heat is supplied to the system, then ∆Q is 
positive and when heat is withdrawn from the 
system, ∆Q is negative. 

• When a gas expands, work done by the gas is 
positive and when a gas contracts then work is 
negative 

• ∆U is positive, when temperature rises and ∆U is 
negative, when temperature falls. 
Remember here we always take work done by the 
system.  

5.2 Mayer’s Formula 

P
P

dQC
dT

 =  
 

 

Or, PdQ C dT=  

From equation 

PdQ C dT dU PdV= = +  

Again, from equation (2) substituting  

VdU C dT=  

( )P VC dT C dT PdV... 4= +  

For one mole of gas ( )1 ,µ = from ideal gas equation,  

PV RdT=  

PdV RdT=  

From equations 

( )P VC C dT RdT− =  

Or, P VC C R− =  

Where PC is the Specific heat at constant pressure and VC is 
the specific heat at constant volume. 
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6. Cyclic and Non-Cyclic 
 Processes   
6.1 Introduction to Cyclic and Non-
 Cyclic Processes  
Cyclic Process: A cyclic process is one in which the system 
returns to its initial stage after undergoing a series of 
changes. 

Indicator Diagram 

 
Fig 15.10 

∆U = 0 

W = Area enclosed by the loop. 

Q = W as per First Law of thermodynamics 

Here W is positive if the cycle is clockwise and it is 
negative if the cyclic is anti clockwise. 

Non-Cyclic Process: In Non-cyclic process the series of 
changes involved do not return the system back to its initial 
state. 

i.e., change in internal energy for cyclic process is zero and 
also U T T 0∆ ∝ ∆ ⇒ ∆ =  

i.e., temperature of system remains constant. i.e, heat 
supplied is equal to the work done by the system.  

6.2 Work done and Heat exchange in 
 Cyclic Processes 
In cyclic process, initial and final points are same. 

 
Fig 15.11 

Therefore, ( ) ( )i i i f f fp V ,T p ,V ,T=  

Internal energy is a state function which only depends on 
temperature (in case of an ideal gas). 

i fT T=  

i fU U⇒ =  

Or, netU 0∆ =  

If there are three process in a cyclic abc, then 

ab bc caU U U 0∆ + ∆ + ∆ =  

From first law of thermodynamics, 

netQ W U,if U 0, then= + ∆ ∆ =  

net netQ W=  

Or, ab bc ca ab bc caQ Q Q W W W+ + = + +  

Further, netW = area under P-V diagram. For example, 

netW = + area of triangle ‘abc’ in the shown diagram. Cycle 
is clockwise. So, work done will be positive. 

6.3 Reversible and Irreversible 
 Processes 
Reversible Process: A reversible process is the process 
where it never occurs; on the contrary the irreversible 
process is the one which can be said to be the natural 
process and cannot be reversed. 

Thermodynamics is the example of the reversible process. 
Here the system and the surroundings return to the same 
stage at the end of the process. 
 
NOTE: 

A Reversible process takes two processes into account 
while in the first process participants convert into another 
form, tin the case of this second process the reverse 
reaction takes space where the resultants get back to the 
initial state. 

Types of reversible processes: There are two types of 
reversible processes. The internally reversible process and 
the external reversible process. Internal reversible process 
involves no irreversibility within the system boundaries. 
This states that the system undergoes the stage of 
equilibrium but when it returns it again passes through the 
same stage.  

• In the externally reversible process there are no 
irreversibility’s  
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Irreversible Process: an irreversible process is a naturally 
occurring phenomenon, which does not go back to its 
original state. 
Factors behind Irreversibility of process:  
An irreversible process can be said to be the 
thermodynamics process that departs equilibrium. When we 
talk in terms of pressure, we can say that it occurs when the 
pressure of the system changes and the volume does not 
have time to reach equilibrium. 
The system and the surrounding does not come back to the 
original state even after the completion of the process in the 
spontaneous process. 
Hence, The Reversible Nature of a Process is Dependent on 
Multiple Factors Such as non-elasticity, friction, viscosity, 
electrical resistance etc. 

7. Thermodynamic Processes  
7.1 Isothermal Process 
Description: A thermodynamic process in which 
temperature remains constant 
Condition: The walls of the container must be perfectly 
conducting to allow free exchange of heat between gas and 
its surroundings. 
The process of compression or expansion should be slow so 
as to provide time for exchange of heat. 
These both conditions are perfectly ideal. 
Equation of State: T = Constant or PV = Constant 
Indicator Diagram: 

 
 
 
 

Fig 15.12 

Slope of P – V curve is dP
dV

 at any point. 

PV = nRT 
( ) ( )dP V P dV 0⇒ + =  
dP P
dV V

⇒ = −  

∆U = 0          (Temperature remains constant) 
v2

g
v2

W P dV= ∫  

v2

v2

nRT dV
V

= ∫           [Using PV = nRT] 

2

1

VnRT ln
V

=  

Since 1 1 2 2P V P V=  

Therefore, 1

2

PW nRT ln
P

 
=  

 
 

First Law of Thermodynamics 
Q U W= ∆ +  

2

1

VQ nRT ln
V

⇒ =  

NOTE: 
All the heat supplied is used entirely to do work against 
external surroundings. If heat is supplied then the gas 
expands and if heat is withdrawn then the gas contracts. 

Practical Examples: 
Melting of ice at 0°C 
Boiling of water at 100°C 

7.2 Adiabatic Process  
Description: When there is no heat exchange with 
surroundings. 
Conditions: The walls of the container must be perfectly 
non-conducting in order to prevent any exchange of heat 
between the gas and its surroundings. 
The process of compression or expansion should be rapid, 
and so, there is no time for the exchange of heat. 
These conditions are again ideal condition and are hard to 
obtain 
Equation of State: 
PV constantγ =  
or 1TV constantγ− =  

or 1PT constant
γ
−γ =  

Indicator Diagram 

 
Fig 15.13 
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Slope of adiabatic curve dP
dV

=  

PV constγ =  
( ) ( )1P V dv dP V 0γ−⇒ γ + γ =  

dP P
dV V

−γ
⇒ =  

As shown in graph adiabatic curve is steeper than isothermal 
curve. 

( )2 1 2 2 1 1nR T T P V P VnfRdTU
2 1 1

− −
∆ = = =

γ − γ −
 

Work Done by Gas: If a gas adiabatically expands from V1 
to V2 

( )
v2

v2

W P dv= ∫  

v2

v2

dVcons tan t
Vγ= ∫  

PV cons tan t
cons tan tP

V

γ

γ

 =
 
 ⇒ =
  



 

V21

V1

Vcons tan t
1

−γ+ 
= ×  − γ 

1 1
2 1

cons tan t 1 1
1 V Vγ− γ−

 
= − − γ  

 

Also we know 
1 1 2 2P V P V cons tan tγ γ= =  

2 2 1 1
1 1

2 1

P V P V1
1 V V

γ γ

γ− γ−

 
⇒ − − γ  

 

( )1 22 2 1 1 nR T TP V P VW
1 1

−−
= =

γ − γ −
 

First Law of Thermodynamics 
Q U W= ∆ +  
Substituting the values 
We get Q = 0 
NOTE: 

If gas expands adiabatically then its temperature 
decreases and vice versa. 

Practical Example 
• Propagation of sound waves in the form of 

compression and rarefaction. 
• Sudden bursting of a cycle tube. 

 

7.3 Isochoric Process  
Description: Volume remains constant 
Condition: A gas being heated or cooled inside a rigid 
container. 

Equation of State: V = constant or P
T

= constant 

 
Fig 15.14 

 
nfR TU

2
∆

∆ =  

Work 
W = 0 as gas does not expands 
First Law of thermodynamics 
Q U W= ∆ +  

nfR TQ
2
∆

⇒ =  

NOTE: 

Since we have studied earlier, that when heat is supplied 
to any process. Its temperature increases according to 
relation. 

 
Q nC T= ∆  

( )QC .... 1
n T

⇒ =
∆

 

Now this C depends upon external conditions for gases. 

Here it is referred as ( )
v

Q 2
n T
∆ 

∆ 
 

i.e. Molar heat capacity at constant volume Comparing 
equation 1 and 2 

We get ( )v
fRC ... 3
2

=  

7.4 Isobaric Process  
Description: When pressure remains constant 
Condition: When in one container, the piston is free to move 
and is not connected by any agent. 
Equation of State: P = constant 
V cons tan t
T

=  

Indicator Diagram: 
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Fig 15.15 

 
nfR TU

2
∆

∆ =  same as always 

W PdV P V= = ∆∫           (as pressure is constant) 

2 1PV PV nR T= − = ∆  
First Law of Thermodynamics 
Q U W= ∆ +  

nfR TQ nR T
2
∆

⇒ = + ∆  

( )fRQ n R T ... 4
2

 ⇒ = + ∆  
 

Similar to Cv, we can define molar heat capacity at constant 
pressure 

( )p
p

QC ... 5
n T

⇒ = ∆ 
 

From equation 4 and 5  

We get ( )p
fRC R ... 6
2

= +  

From equation 3 and 6 

Replacing fR
2

 by Cv we get 

p vV C R= +  

which is also called Mayer’s Relation. 
Similar to molar specific heat at constant pressure and molar 
specific heat at constant volume, we can define molar specific 
heat for any process. 
For example: 

adiabaticC 0=  

isothermalC = ∞  
Basically gas does not possess a unique specific heat. Mainly 
we have p vC and C . 

• Specific Heat at Constant Volume: It is defined as 
the amount of heat required to raise the temperature of 
1g of a gas through 1C°, when its volume is kept 
constant. It is denoted as CV. 

• Specific Heat at Constant Pressure: It is defined as 
the amount of heat required to raise the temperature of 
1g of a gas through 1 C°  keeping its pressure constant. 
It is denoted as Cp. 

 

NOTE: 

P vc ,c  means Molar heat Capacity and P VC ,C  means 
specific heat capacity 

V V P PC Mc and C Mc= =  where M stands for molar mass 
of any sample. 

p v
Rc c
M

− =  

7.5 Melting Process  
In any case first law is always applicable 

fQ mL=  as learned earlier. 
W = 0 
(In the change of state from solid to liquid we ignore any 
expansion or contraction as it is very small) 
According to first law of thermodynamics 

U Q W∆ = −  

fU mL∆ =  

NOTE: 
The heat given during melting is used in increasing the 
internal energy of any substance 

7.6 Boiling Process  
Here, vQ mL=  

[ ]2 1W P V V= −  

(Pressure is constant during boiling and it is equal to 
atmosphere pressure) 

U Q W⇒ ∆ = −  

( )v 2 1U mL P V V∆ = − −  

7.7 Polytropic Process 
A polytropic process is a thermodynamic process that obeys 
the relation: 

npv C=  
Where p is the pressure, V is volume, n is the polytropic 
index, and C is a constant. The polytropic process equation 
can describe multiple expansion and compression processes 
which include heat transfer.  
Particular Cases: 
Some specific values of n correspond to particular cases: 
n 0= for an isobaric process, 
n = +∞ for an isochoric process 
In addition, when the ideal gas law applies: 
n 1= for an isothermal process, 
n = γ for an isentropic process. 
Where γ is the ratio of the heat capacity at constant pressure 

( )PC to heat capacity at constant volume ( )vC . 
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7.8 Free-Expansion  
A process in which gas is allowed to expand in vacuum and 
this happens so quickly that no heat leaves or enters the 
system this type of process is also known as adiabatic process 
and because this happens so fast the gas does not cross the 
system boundaries, hence no work is done by the system or 
on the system, then the expansion is called the free expansion. 
We can for the equate free expansion into  

f iU U Q W− = −  
Now, as know heat is exchange and no work is done  
Q 0=  and W 0= i.e., f iU U=  
Further, as we see there is no change in the internal energy, 
Hence, the temperature remains constant. 

7.9 Limitation of First Law of 
  Thermodynamics 
• The first law does not indicate the direction in which 

the change can occur. 
• The first law gives no idea about the extent of change. 
• The first law of thermodynamics gives no information 

about the source of heat. i.e. whether it is a hot or a 
cold body. 

8. Heat Engine  
It is a device that converts heat energy into mechanical 
energy.  

Key Elements: 

• A source of heat at higher temperature 
• A working substance 
• A sink of heat at lower temperature. 
Working: 
• The working substance goes through a cycle 

consisting of several processes. 
• In some processes it absorbs a total amount of heat 

Q1 from the source at temperature T1. 
• In some processes it rejects a total amount of heat Q2 

to the sink at some lower temperature T2. 
• The work done by the system in a cycle is transferred 

to the environment via some arrangement. 
Schematic Diagram 

 
Fig 15.16 

 

First Law of Thermodynamics 
⸪ Energy is always conserved 

1 2Q W Q⇒ = +  

8.1 Thermal Efficiency  
Thermal Efficiency of a heat engine is defined of the ratio of 
net work done per cycle by the engine to the total amount of 
heat absorbed per cycle by the working substance from the 
source.  

It is denoted by ( )
1

W ... 1
Q

η =  

Using equation 1 and 2 we get 

( )2

1

Q1 ... 2
Q

η = −  

Ideally engines should have efficiency = 1 
NOTE: 

 The mechanism of conversion of heat into work vanes for 
different heat engines. 

The system heated by an external furnace, as in a steam 
engine. Such engines are called as external combustion 
engine. 
The system in which heat is produced by burning the fuel 
inside the main body of the engine is called as Internal 
Combustion Engine. 

9. Carnot Cycle  
Sadi Carnot devised on ideal cycle of operation for a heat 

engine called as carnot cycle. 

Engine used for realising this ideal cycle is called as carnot 

heat engine. 

The essential parts of an Ideal heat engine are shown in 
figure. 

 
Fig 15.17 

• Source of heat: The source is maintained at a fixed 
higher temperature T1, from which the working 
substance draws heat. The source is supposed to 
possess infinite thermal capacity and as such any 
amount of heat can be drawn from it without 
changing its temperature. 
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• Sink of heat: The sink is maintained at a fixed lower 
temperature T2, to which any amount of heat can be 
rejected by the working substance. It has also infinite 
thermal capacity and as such its temperature remains 
constant at T2, even when any amount of heat is 
rejected to it. 

• Working substance: A perfect gas acts as the 
working substance. It is contained in a cylinder with 
non-conducting sides but having a perfectly 
conducting-base. This cylinder is fitted with perfectly 
non-conducting and frictionless piston. 

• Apart from these essential parts, there is a perfectly 
insulating stand or pad on which the cylinder can be 
placed. It would isolate the working substance 
completely from the surroundings. Hence, the gas 
can undergo adiabatic changes. 
The Carnot cycle consists of the following four 
stages: 

• Isothermal expansion 
• Adiabatic expansion 
• Isothermal compression 
• Adiabatic compression 

The cycle is carried out with the help of the Carnot engine 
as detailed below: 

 
Fig 15.18 

Consider one gram mole of an ideal gas enclosed in the 
cylinder. Let V1, P1, T1 be the initial volume, pressure and 
temperature of the gas. The initial state of the gas is 
represented by the point A on P−V. diagram, We shall 
assume that all the four processes are quasi-static and 
dissipative, the two conditions for their reversibility. 
Steps 
• Isothermal Expansion: The cylinder is placed on 

the source and gas is allowed to expand by slow 
outward motion of piston. Since base is perfectly 
conducting therefore the process is isothermal. 
Now 

1U 0∆ =  

2
1 1 1

1

Vq W RT ln. Area ABMKA
V

= = =  

q1 → Heat absorbed by gas 

w1 → Work done by gas 
• Adiabatic Expansion: The cylinder is now removed 

from source and is placed on the perfectly insulating 
pad. The gas is allowed to expand further from B (P2, 
V2) to C (P3, V3). Since the gas is thermally insulated 
from all sides, therefore the processes is adiabatic

2q 0=
( )2 1

2

R T T
U

1
−

∆ =
γ −

( )1 2
2

R T T
W Area BCNMB

1
−

= =
γ −

 

• Isothermal Compression: The cylinder is now 
removed from the insulating pad and is placed on the 
sink at a temperature T2. The piston is moved slowly 
so that the gas is compressed until is pressure is P4 
and volume is V4. 

3U 0∆ =  

4
3 2

3

VW RT ln Area CDLNC
V

= − = −  

4
3 2

3

Vq RT ln
V

= −  

q3 = Heat absorbed in this process 
W3 = Work done by gas 

• Adiabatic Compression: The cylinder is again placed 
on the insulating pad, such that the process remains 
adiabatic. Here the gas is further compressed to its 
initial P1 and V1. 

( )1 2
4

R T T
U

1
−

∆ =
γ −

 

( )1 2
4

R T T
W area DAKLD

1
− −

= = −
γ −

 

4q 0=  
W4 = work done by the gas 

9.1 Analysis of Carnot Cycle  
Total work done by the engine per cycle. 

1 2 3 4W W W W= + + +  
1 3W W= +  

2 4
1 2

1 3

V VW RT ln RT ln
V V

= −  

Q1 = Total heat absorbed = q1 
2

1
1

VRT ln
V

=  

Q2 = Total heat released = −q3 
[q3 = Heat absorbed and not heat released] 

3
2

4

V
RT ln

V
=  
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We can see that for heat engine 
1 2W Q Q= −  

= Area under ABCDA 

9.2 Efficiency of Carnot Engine 
2

1 1

QW 1
Q Q

η = = −  

Now steps 2 is adiabatic and step 4 is also adiabatic 
1 1

1 2 2 3T V T Vγ− γ−⇒ =  

and 1 1
1 1 2 4T V T Vγ− γ−=  

( )32

1 4

VV ... 21
V V

⇒ =  

From equation 19, 20 and 21 we get 

1 1

2 2

Q T
Q T

=  

2
Carnot

1

Tn 1
T

∴ = −  

• Carnot engineη −  depends only upon source temperature 

and sink temperature. 
• Carnot engine 1η =  only when T2 = 0 K or T1 = ∞ which is 

impossible to attain. 
• If 2 1T T 0= ⇒ η =  ⇒ Heat cannot be converted to 

mechanical energy unless there is some difference 
between the temperature of source and sink. 

9.3 Carnot Theorem 
Statement: Carnot theorem states that all reversible engines 
working between same two temperatures have same 
efficiency irrespective of the nature of working substance. 
The source and the sink works between the same 
temperature. 
• Working between two given temperatures, T1 of hot 

reservoir (the source) and T2 of cold reservoir (the 
sink), no engine can have efficiency more than that 
of the Carnot engine. 

• The efficiency of the Carnot engine is independent of 
the nature of the working substance. 
Engine used for realizing this ideal cycle is called as 
Carnot heat engine. 

Proof: 
Step - 1: Imagine a reversible engine R and an irreversible 
engine-I working between the same source (hot reservoir T1) 
and sink (cold reservoir T2). 
Step - 2: Couple two engines such that I acts like heat 
engine and R acts like refrigerator. 
Step - 3: Let engine I absorb Q1 heat from the source deliver 
work W1 and release the balance Q1 − W1 to the sink in one 
cycle. 

 
Fig 15.19 

Step - 4: Arrange R, such that it returns same heat Q, to the 
source, taking Q2 from the sink and requiring work W = Q1 – 
Q2 to be done on it. 

Step - 5: Suppose R Iη < η  (i.e.) If R were to act as an engine 
it would give less work output than that of I (i.e.) W < W1 for 
a given Q1 and Q1 – W > Q1 – W1 

Step - 6: In totality, the I-R system extracts heat (Q1 − W) − 
(Q1 − W1) = W1 − W and delivers same amount of work in 
one cycle, without any change in source or anywhere else. 
This is against second Law of Thermodynamics. (Kelvin - 
Planck statement of second law of thermodynamics) 

Hence the assertion 1 Rη > η  is wrong. 

Similar argument can be put up for the second statement of 
Carnot theorem, (i.e) Carnot efficiency is independent of 
working substance. 

∴ We use ideal gas for calculating but the relation. 

1 1

2 2

Q T
Q T

=  will always hold true for any working substance 

used in a Carnot engine. 

9.4 Second Law of Thermodynamics 
The second law of thermodynamics states that the heat energy 
cannot transfer from a body at a lower temperature to a body 
at a higher temperature without the addition of energy. 

There are number of ways in which this law can be stated. 
Though all the statements are the same in their contents, the 
following two are significant. 

Kelvin Planck Statement: No process is possible whose sole 
result is the absorption of heat from a reservoir and the 
complete conversion of the heat into work. 

Clausius Statement: No process is possible whose sole result 
is the transfer of heat from a colder object to a hotter object. 

Significance: 100% efficiency in heat engines or infinite CoP 
in refrigerators is not possible. 
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10. Refrigeration  
A refrigerator or heat pump is a device used for cooling 
things. 

Key Elements: 
• A cold reservoir at temperature T2. 
• A working substance. 
• A hot reservoir at temperature T1. 
Working 
• The working substance goes through a cycle 

consisting of several process. 
• A sudden expansion of the gas from high to low 

pressure which cools it and converts it into a vapour-
liquid mixture. 

• Absorption by the cold fluid of heat from the region to 
be cooled, converting it into vapour. 

• Heating up of the vapour due to external work done on 
the working substance. 

• Release of heat by the vapour to the surroundings 
bringing it to the initial state and completing the cycle. 

Schematic Diagram. 

 
Fig 15.20 

 
First Law of Thermodynamics 

( )2 1Q W Q ... 1+ =  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

10.1 Coefficient of Performance 
Coefficient of Performance of refrigerator (β) is defined as 
the ratio of quantity of heat removed per cycle from contents 
of the refrigerator (Q2) to the energy spent per cycle (W) to 
remove this heat. 

( )2Q ... 2
W

β =  

Using equation 1 and 2 we get 

2

1 2

Q
Q Q

β =
−

 

Ideally heat pumps should have β = ∞ 
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NCERT Corner 
(Some Important Points to remember) 
• The molecules of a gas are in a state of incessant 

random motion. They move in all directions with 
different speeds., (of the order of 500 m/s) and obey 
Newton’s laws of motion. 

• The molecules do not exert any force of attraction or 
repulsion on each other, except during collision. 

• A molecule moves along a straight line between two 
successive collisions and the average straight 
distance covered between two successive collisions is 
called the mean free path of the molecules. 

• Pressure exerted by an ideal gas is numerically equal 
to two third of mean kinetic energy 

• Ideal Gas: That gas which strictly obeys the gas 
laws, (such as Boyle’s Law, Charles’, Gay Lussac’s 
Law etc.) 

• Real Gas: All gases are referred to as real Gases. All 
real gas near the ideal gas behavior at low pressures 
and temperatures high enough, where they cannot be 
liquified 

• Gay Lussac’s Law/Boyle’s Law:  PV = constant for 
given mass of gas at constant temperature, which is 
also called Boyle’s Law. 

• Charle’s Law: PV T,∝  If P is constant, V T,∝  
which is the Charles’ Law 

• Constant Volume Law: PV T∝ , If V is constant, 
P T,∝  which the constant volume law. 

• Avogadro’s Law: Equal volumes of all ideal gases 
existing under the same conditions of temperature 
and pressure contain equal number of molecules 
which is Avogadro’s Law or hypothesis. 

• Ideal Gas Equation: BPV Nk T=  which is the ideal 
gas equation 

• Speed of Gas Molecules:  
• In solids: Atoms are tightly packed, interatomic 

spacing about 1A°. Interatomic force of attraction are 
strong. 

• In liquids: Atoms are not as rigidly fixed as in 
solids. Interatomic spacing is about the same 2Å. 
Interatomic force a attraction are relative weaker. 

• In Gases: Atoms are very free. Inter atomic spacing 
is about tens of Angstroms. Interatomic forces are 
much weaker in gases than both in solids and liquids. 

• Degrees of Freedom: The number of degrees of 
freedom of a dynamical system is defined as the total 
number of co-ordinates or independent quantities 

required to describe completely the position and 
configuration of the system. 

• Absolute zero: Absolute zero of a temperature may 
be defined as that temperature at which the root mean 
square velocity of the gas molecule reduces to zero. 

• Law of Equipartition of Energy: According to this 
law, for any dynamical system in thermal 
equilibrium, the total energy is distributed equally 
amongst all the degrees of freedom, and the energy 
associated with each molecule per degree of freedom 

is B
1 k T,
2

 where kB is Boltzman constant, and T is 

temperature of the system. 
• Mean Free Path: The path traversed by a molecule 

between two successive collisions with other 
molecule is called the mean free path

Total distance travelled by a molecule
No. of collisions it makes with other molecules

=


l
 

• Mean free path depends inversely on the number 
density and size of the molecule. 

• Thermodynamic System: A collection of large 
number of molecules of matter (solid, liquid or gas) 
which are so arranged that these possess certain 
values of pressure, volume and temperature forms a 
thermodynamic system. 

• The parameters pressure, volume, temperature, 
internal energy etc which determine the state or 
condition of system are called thermodynamic state 
variables. 

• In thermodynamics we deal with the thermodynamic 
systems as a whole and study the interaction of heat 
and energy during the change of one thermodynamic 
state to another. 

• Thermal Equilibrium: Two systems when in 
contact with each other come to thermal equilibrium 
when their temperatures become same. 

• Zeroth Law of Thermodynamics: According to 
zeroth law, when the thermodynamic systems A and 
B are separately in thermal equilibrium with a third 
thermodynamic system C, then the systems A and B 
are in thermal equilibrium with each other also. 

• Thermodynamic Process: A thermodynamic 
process is said to take place when some changes 
occur in the state of a thermodynamic system, i.e., 
the thermodynamic parameters of the system change 
with time. Types of these thermodynamic process are 
Isothermal, Adiabatic, Isobaric and Isochoric. 

• Quasi Static Process: A thermodynamic process 
which is infinitely slow is called as quasi-static 
process. 
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• Quasi-static process is an idealised process. We 
generally assume all the processes to be quasistatic 
unless stated. 

• First Law of Thermodynamics: The first law states 
that the change in internal energy of the system ( U∆  
system) is equal to the difference between the heat 
provided to the system (Q) and the work (W) done by 
the system on its surroundings in a closed system 
(i.e., there is no transfer of matter into or out of the 
system). systemU Q W∆ = −  

• Cyclic Process: A cyclic process is one in which the 
system returns to its initial stage after undergoing a 
series of changes. 

• Non-Cyclic Process: In Non-cyclic process the 
series of changes involved do not return the system 
back to its initial state. 

• Isothermal Process: A thermodynamic process in 
which temperature remains constant 

• Adiabatic Process: There is no heat exchange with 
surroundings. 

• Isochoric Process: Volume remains constant and the 
gas should be heated or cooled inside a rigid 
container. 

• Isobaric Process: When pressure remains constant 
and When it is in container, the piston should be free 
to move and is should not be connected by any agent. 

• Specific Heat at Constant Volume: It is defined as 
the amount of heat required to raise the temperature of 
1g of a gas through 1C°, when its volume is kept 
constant. It is denoted as CV. 

• Specific Heat at Constant Pressure: It is defined as 
the amount of heat required to raise the temperature of 
1g of a gas through 1 C°  keeping its pressure constant. 
It is denoted as Cp. 

• Thermal Efficiency: Thermal Efficiency of a heat 
engine is defined of the ratio of net work done per 
cycle by the engine to the total amount of heat 
absorbed per cycle by the working substance from the 
source.  

It is denoted by 
1

W
Q

η =  

• External Combustion Engine: The system heated by 
an external furnace, as in a steam engine. Such engines 
are called as external combustion engine. 

• Internal Combustion Engine: The system in which 
heat is produced by burning the fuel inside the main 
body of the engine is called as Internal Combustion 
Engine. 

• Carnot Theorem: Carnot theorem states that all 
reversible engines working between same two 
temperatures have same efficiency irrespective of the 
nature of working substance. The source and the sink 
works between the same temperature. 

• Second Law of Thermodynamics: The second law 
of thermodynamics states that the heat energy cannot 
transfer from a body at a lower temperature to a body 
at a higher temperature without the addition of energy. 

• Coefficient of Performance: Coefficient of 
Performance of refrigerator (β) is defined as the ratio 
of quantity of heat removed per cycle from contents of 
the refrigerator (Q2) to the energy spent per cycle (W) 
to remove this heat. 
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